MAT225 Section Summary: 6.3
 Orthogonal Projections
 Summary

This section formalizes one of the things that I've been emphasizing all along about projections, orthogonal complements, etc., to whit: we can't solve the equation $A \mathbf{x}=\mathbf{b}$, so we try to solve the next best thing: we solve $A \mathbf{x}=\hat{\mathbf{b}}$, where $\hat{\mathbf{b}}$ is the projection of \mathbf{b} onto the column space of A.

Theorem 8: The Orthogonal Decomposition Theorem Let W be a subspace of \mathbb{R}^{n}. Then each \mathbf{y} in \mathbb{R}^{n} can be written uniquely in the form

$$
\mathbf{y}=\hat{\mathbf{y}}+\mathbf{z}
$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp}. In fact, if $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ is any orthogonal basis of W, then

$$
\hat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\ldots+\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}} \mathbf{u}_{p}
$$

and then $\mathbf{z}=\mathbf{y}-\hat{\mathbf{y}}$.
orthogonal projection of y onto W : The vector $\hat{\mathbf{y}}$ is called the orthogonal projection of y onto W, written $\operatorname{proj}_{W} \mathbf{y}$.

Properties of orthogonal projections:

1. If \mathbf{y} is in $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$, then $\operatorname{proj}_{W} \mathbf{y}=\mathbf{y}$.
2. The orthogonal projection of y onto W is the best approximation to \mathbf{y} by elements of W.

Theorem 9: The Best Approximation Theorem Let W be a subspace of \mathbb{R}^{n}, y any vector in \mathbb{R}^{n}, and $\hat{\mathbf{y}}$ the orthogonal projection of \mathbf{y} onto W. Then $\hat{\mathbf{y}}$ is the closest point in W to \mathbf{y}, in the sense that

$$
\|\mathbf{y}-\hat{\mathbf{y}}\|<\|\mathbf{y}-\mathbf{v}\|
$$

for all \mathbf{v} in W distinct from $\hat{\mathbf{y}}$.

Theorem 10: If $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for a subspace W of \mathbb{R}^{n}, then

$$
\operatorname{proj}_{W} \mathbf{y}=\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{y} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}+\ldots+\left(\mathbf{y} \cdot \mathbf{u}_{p}\right) \mathbf{u}_{p}
$$

If $U=\left[\begin{array}{llll}\mathbf{u}_{1} & \mathbf{u}_{2} & \ldots & \mathbf{u}_{p}\end{array}\right]$, then

$$
\operatorname{proj}_{W} \mathbf{y}=U U^{T} \mathbf{y}
$$

for all \mathbf{y} in \mathbb{R}^{n}.
Now, as an example, I want to consider Taylor series expansions for function with three derivatives at a point a (that might define our space: you should check that this is indeed a vector space, by checking that it's a subspace of the space of thrice differentiable functions). The Taylor series expansion for the function f is

$$
C(x)=f(a)+f^{\prime}(a)(x-a)+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2}+f^{\prime \prime \prime}(a) \frac{(x-a)^{3}}{6}
$$

This is a vector in the space \mathbb{P}_{3}. What we're doing is projecting the vector f (which is otherwise unspecified) onto \mathbb{P}_{3}, in a way that minimizes the distance between the vectors

$$
\left[\begin{array}{c}
C(a) \\
C^{\prime}(a) \\
C^{\prime \prime}(a) \\
C^{(3)}(a)
\end{array}\right] \text { and }\left[\begin{array}{c}
f(a) \\
f^{\prime}(a) \\
f^{\prime \prime}(a) \\
f^{(3)}(a)
\end{array}\right]
$$

(in fact, the difference between these vectors is zero!).
Now with functions you have to be a little careful, because it's a little tricky to define just what is meant by an inner-product. We're not going to get into that...!

