
MAT225 Section Summary: 6.1
Inner Product, Length, and Orthogonality
Summary

Our objective here is to solve the least squares problem: there are times
when we would like to the equation Ax = b exactly, but when the solution
does not, in fact exist. The question then is, what’s the best non-solution?
We need to do something, so what should we do when the exact solution
isn’t a possibility? Do the next best thing....

What do we mean by “next best thing”? We mean that we want to make
the distance between Ax and b as small as possible; that will have to do
with definitions of distance, which will fall out of something called an inner
product.

The classic example of this is the standard least-squares line, which stu-
dents of any science are familiar with: In terms of matrix operations, we’re
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trying to find coefficients α and β such that

y = α + βx
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for all points. Unfortunately, we have more than two points, so the system
becomes over-determined:
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We can’t (generally) find an actual solution vector x =

[

α

β

]

that makes this

true, so we make due with an approximate solution x∗ =

[

a

b

]

that gives us

a “best fit”: that minimizes the distance between the two vectors Ax∗ and
y.

inner product: The inner product between vectors u and v in IRn, or their
dot product, is defined as

u · v ≡ uTv = u1v1 + u2v2 + . . . + unvn

Example: #1, p. 382.

Properties of inner products (Theorem 1): Let u, v, and w be vectors
in IRn, and c be any scalar. Then

1. u · v = v · u

2. (u + v) · w = u · w + v · w

3. (cu) · v = c(u · v) = u · (cv)

4. u · u ≥ 0, and u · u = 0 if and only if u = 0.

norm: The length or norm of vector v is the non-negative scalar ‖v‖ =√
v · v.

Example: #7, p. 382.
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unit vector: a vector whose length is 1 is called a unit vector, and one
can “normalize” a vector (that is, give it unit length) by dividing the vector
by its norm:

v̂ =
v

‖v‖

Example: #9, p. 382.

distance: For u and v in IRn, the distance between u and v, denoted
dist(u,v), is the length of the vector u − v. That is,

dist(u,v) = ‖u − v‖

Example: #13, p. 382.

orthogonal: two vectors u and v in IRn are orthogonal (to each other) if
and only if u · v = 0.
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Example: #15, p. 382.

Theorem 2 (the Pythagorean Theorem): Two vectors u and v are
orthogonal if and only if

‖u + v‖2 = ‖u‖2 + ‖v‖2

orthogonal complement: If a vector z is orthogonal to every vector in
a subspace W of IRn, then z is said to be orthogonal to W . The set of
all such vectors is called the orthogonal complement of W , and denoted
W⊥.

Example: #26, p. 383.

It is easy to deduce the following facts concerning the orthogonal com-
plement of W :
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1. A vector x is in W⊥ if and only if x is orthogonal to every vector in a
spanning set of W .

2. W⊥ is a subspace of IRn.

Demonstration: #29 and 30, p. 383

Theorem 3: Let A be an m x n matrix. The orthogonal complement of the
row space of A is the nullspace of A, and the orthogonal complement of the
column space of A is the nullspace of AT :

(Row A)⊥ = Nul A and (Col A)⊥ = Nul AT

The angle between two vectors in IRn can be defined using the familiar
formula from calculus:

cos(θ) =
u · v

‖u‖‖v‖
One interpretation of the cosine of this angle in higher dimensional space is
as a correlation coefficient.

Example:

1. If one vector is defined as the difference between heights of individuals
and the mean height, and

2. the other as the difference between weights of individuals and the mean
weight, then

3. the correlation between the two variables is given by the cosine of this
angle.

The correlation coefficient in the case of the figure shown in the linear re-
gression above is .86: the variables are strongly positively correlated.
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