MAT225 Section Summary: 5.3

Diagonalization
Summary
diagonalizable: A square matrix A is diagonalizable if A is similar to a diagonal matrix. That is, if $A=P D P^{-1}$ for some diagonal matrix D.

The Diagonalization Theorem: $A_{n \times n}$ is diagonalizable if and only if A has n linearly independent eigenvectors. Moreover, $A=P D P^{-1}$ (where D is diagonal) if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are the eigenvalues.

Example: \#2, p. 325
Rewrite the equation $A=P D P^{-1}$ in the form $A P=P D$ to understand what is going on! This is just the eigenvalue equation in partitioned form:

$$
A\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \ldots & \mathbf{v}_{n}
\end{array}\right]=\left[\begin{array}{llll}
\lambda_{1} \mathbf{v}_{1} & \lambda_{2} \mathbf{v}_{2} & \ldots & \lambda_{n} \mathbf{v}_{n}
\end{array}\right]
$$

Theorem 6: An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Example: \#10, p. 326
Theorem 7: Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$.

1. For $1 \leq k \leq p$, the dimension of the eigenspace for λ_{k} is less than or equal to the multiplicity of the eigenvalue λ_{k}.
2. The matrix A is diagonalizable if and only if the sum of the dimensions of the distinct eigenspaces equals n.
3. If A is diagonalizable, and B_{k} is a basis for the eigenspace corresponding to λ_{k}, then the collection of the bases B_{1}, \ldots, B_{p} forms an eigenvector basis for \mathbb{R}^{n}.

Example: \#33, p. 326

