MAT225 Section Summary: 4.6

Rank
Summary
Rank: The rank of a matrix is the dimension of the column space of A. That is, it is equal to the number of independent vectors among the columns of the matrix.
row space: the row space of a matrix A is the span of the rows of A.
Theorem 13: If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the non-zero rows of B form a basis for the row spaces of A and B.

Theorem 14 (The Rank Theorem): The dimensions of the column space and the row space of an $m \mathrm{x} n$ matrix A are equal (the rank of A). The rank satisfies the relation

$$
\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n
$$

You may be wondering why the Nul space popped up here: the point is that all these spaces are fundamentally connected.

Example: \#2, p. 269

The Invertible Matrix Theorem (continued): Let A be an n x n matrix. Then the following statements are each equivalent to the statement that A is an invertible matrix:

- The columns of A form a basis of \mathbb{R}^{n}.
- $\operatorname{Col} A=\mathbb{R}^{n}$
- $\operatorname{dim} \operatorname{Col} A=\mathrm{n}$
- $\operatorname{rank} A=\mathrm{n}$
- $\operatorname{Nul} A=\{\mathbf{0}\}$
- $\operatorname{dim} \operatorname{Nul} A=0$

Examples: \#5,8-11, p. 269

Example: \#16, p. 269

Example: \#18, p. 270

Example: \#24, p. 270

