MAT225 Section Summary: 4.5

The Dimension of a Vector Space
Summary
Theorem 9: If a vector space V has a basis $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$, then any set in V containing more than n vectors must be linearly dependent.

Theorem 10: If a vector space V has a basis of n vectors, then every basis of V must consist of exactly n vectors.
dimension of a vector space: If V is spanned by a finite set, then V is finite-dimensional, and the dimension $V(\operatorname{dim} V)$ is the number of vectors in a basis for V. The dimension of the zero vector space $\{\mathbf{0}\}$ is defined to be zero. If V is not spanned by a finite set, then V is said to be infinite-dimensional.

Example: \#2, p. 260

Theorem 11 Let H be a subspace of a finite-dimensional vector space V. Any linearly independent set in H can be expanded, if necessary, to a basis for H. Also, H is finite-dimensional and

$$
\operatorname{dim} H \leq \operatorname{dim} V
$$

Example: \#11, p. 261

Theorem 12 (the Basis Theorem): Let V be a p-dimensional vector space, $p \leq 1$. Any linearly independent set of exactly p elements in V is automatically a basis for V. Any set of exactly p elements that spans V is automatically a basis for V.

Example: \#22, p. 261

Let A be an $m \times n$ matrix. Then the dimension of $\operatorname{Nul} A$ is the number of free variables in the equation $A \mathbf{x}=\mathbf{0}$, and the dimension of $\operatorname{Col} A$ is the number of pivot columns in A.

Example: \#14, p. 261

Example: \#27, 28, p. 262

