MAT225 Section Summary: 4.4
 Coordinate Systems
 Summary

A basis gives us a way of writing each vector \mathbf{v} in a vector space in a unique way, as a linear combination of the basis vectors. The coefficients of the basis vectors can be considered the coordinates of \mathbf{v} in a coordinate system determined by the basis vectors.

Theorem 7: the Unique Representation Theorem
Let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_{1}, \ldots, c_{n} such that

$$
\mathbf{x}=c_{1} \mathbf{b}_{1}+\ldots+c_{n} \mathbf{b}_{n}
$$

Coordinates: Suppose $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for V, and \mathbf{x} is in V. The coordinates of \mathbf{x} relative to the basis B are the weights c_{1}, \ldots, c_{n} such that $\mathbf{x}=c_{1} \mathbf{b}_{1}+\ldots+c_{n} \mathbf{b}_{n}$.

$$
[\mathbf{x}]_{B}=\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]
$$

is the coordinate vector of x (relative to B), or the
B-coordinate vector of x. The mapping

$$
\mathbf{x} \mapsto[\mathbf{x}]_{B}
$$

is the coordinate mapping (determined by B).
Example: \#1, p. 253

Let

$$
P_{B}=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n}
\end{array}\right]
$$

Then

$$
\mathbf{x}=P_{B}[\mathbf{x}]_{B}
$$

is the link between the standard basis representation of \mathbf{x} (on the left) and the representation of \mathbf{x} in the basis B.

Example: \#5, p. 254

Example: \#14, p. 254

Theorem 8: Let $B=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ be a basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto[\mathbf{x}]_{B}$ is a one-to-one linear transformation from V onto \mathbb{R}^{n}.

This is an example of an isomorphism ("same form") from V onto W. These spaces are essentially indistinguishable.

Example: \#23, p. 254

Example: \#24, p. 254

