MAT225 Section Summary: 4.4 Coordinate Systems Summary

A basis gives us a way of writing each vector \mathbf{v} in a vector space in a unique way, as a linear combination of the basis vectors. The coefficients of the basis vectors can be considered the coordinates of \mathbf{v} in a coordinate system determined by the basis vectors.

Theorem 7: the Unique Representation Theorem

Let $B = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ be a basis for a vector space V. Then for each \mathbf{x} in V, there exists a unique set of scalars c_1, \ldots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \ldots + c_n \mathbf{b}_n$$

Coordinates: Suppose $B = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ is a basis for V, and \mathbf{x} is in V. The coordinates of \mathbf{x} relative to the basis B are the weights c_1, \ldots, c_n such that $\mathbf{x} = c_1 \mathbf{b}_1 + \ldots + c_n \mathbf{b}_n$.

$$[\mathbf{x}]_B = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

is the coordinate vector of x (relative to B), or the

B-coordinate vector of x. The mapping

 $\mathbf{x} \mapsto [\mathbf{x}]_B$

is the coordinate mapping (determined by B).

Example: #1, p. 253

Let

$$P_B = [\mathbf{b}_1 \ \mathbf{b}_2 \ \cdots \ \mathbf{b}_n]$$

Then

$$\mathbf{x} = P_B[\mathbf{x}]_B$$

is the link between the standard basis representation of \mathbf{x} (on the left) and the representation of \mathbf{x} in the basis B.

Example: #5, p. 254

Example: #14, p. 254

Theorem 8: Let $B = {\mathbf{b}_1, \ldots, \mathbf{b}_n}$ be a basis for a vector space V. Then the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_B$ is a one-to-one linear transformation from V onto \mathbb{R}^n .

This is an example of an *isomorphism* ("same form") from V onto W. These spaces are essentially indistinguishable. **Example:** #23, p. 254

Example: #24, p. 254