MAT225 Section Summary: 4.2

Null spaces, column spaces, and linear transformations Summary

The solution set of the homogeneous equation $A_{m \times n} \mathbf{x} = \mathbf{0}$ forms a subspace of \mathbb{R}^n , as one can see easily:

- 1. the zero vector is in the solution set (the trivial solution);
- 2. Consider two vectors in the solution set, **u** and **v**: then $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = \mathbf{0} + \mathbf{0} = \mathbf{0}$, so the solution set is closed under addition.
- 3. Consider a vectors in the solution set, **u** and an arbitrary constant c: then $A(c\mathbf{u}) = cA\mathbf{u} = \mathbf{0}$, so the solution set is closed under scalar multiplication.

Null space of an $m \ge n$ matrix A: the null space of an $m \ge n$ matrix A, denoted Nul A, is the solution set of the homogeneous equation $A\mathbf{x} = \mathbf{b}$. It is the set of all $\mathbf{x} \in \mathbb{R}^n$ that are mapped to the zero vector of \mathbb{R}^m by the transformation $\mathbf{x} \longrightarrow A\mathbf{x}$.

Theorem 2: The null space of an $m \ge n$ matrix A is a subspace of \mathbb{R}^n .

Example: #3, p. 234.

Notice that the number of vectors in the spanning set for Nul A equals the number of free variables in the equation $A\mathbf{x} = \mathbf{0}$.

Column space: Another subspace associated with the matrix A is the column space, Col A, defined as the span of the columns of A: Col A = Span $\{\mathbf{a}_1, \ldots, \mathbf{a}_n\}$. As a span, it is clearly a subspace (Theorem 3).

Col $A = {\mathbf{b} : \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \text{ in } \mathbb{R}^n}$, which says that Col A is the range of the transformation $\mathbf{x} \longrightarrow A\mathbf{x}$.

Example: #16, p. 234

The null space lives in the row space of the matrix A, and the column space lives in the column space of A.

Example: #22, p. 235

Linear Transformation: A linear transformation T from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that

1. $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$

2. $T(c\mathbf{u}) = cT(\mathbf{u})$

The kernel (or null space) of T is the set of u such that $T(\mathbf{u}) = \mathbf{0}$. The range of T is the set of all vectors in W of the form $T(\mathbf{x})$ for some x in V.

Example: #30, p. 235

Examples of linear transformations include matrix transformations, as well as differentiation in the vector space of differentiable functions defined on an interval (a, b).

Example: #33, p. 235