MAT225 Section Summary: 4.2

Null spaces, column spaces, and linear transformations Summary

The solution set of the homogeneous equation $A_{m \times n} \mathbf{x}=\mathbf{0}$ forms a subspace of \mathbb{R}^{n}, as one can see easily:

1. the zero vector is in the solution set (the trivial solution);
2. Consider two vectors in the solution set, \mathbf{u} and \mathbf{v} : then $A(\mathbf{u}+\mathbf{v})=$ $A \mathbf{u}+A \mathbf{v}=\mathbf{0}+\mathbf{0}=\mathbf{0}$, so the solution set is closed under addition.
3. Consider a vectors in the solution set, \mathbf{u} and an arbitrary constant c : then $A(c \mathbf{u})=c A \mathbf{u}=\mathbf{0}$, so the solution set is closed under scalar multiplication.

Null space of an $m \times n$ matrix A : the null space of an $m \times n$ matrix A, denoted $\operatorname{Nul} A$, is the solution set of the homogeneous equation $A \mathbf{x}=\mathbf{b}$. It is the set of all $\mathbf{x} \in \mathbb{R}^{n}$ that are mapped to the zero vector of \mathbb{R}^{m} by the transformation $\mathbf{x} \longrightarrow A \mathbf{x}$.

Theorem 2: The null space of an $m \mathrm{x} n$ matrix A is a subspace of \mathbb{R}^{n}.
Example: \#3, p. 234.

Notice that the number of vectors in the spanning set for $\operatorname{Nul} A$ equals the number of free variables in the equation $A \mathbf{x}=\mathbf{0}$.

Column space: Another subspace associated with the matrix A is the column space, $\operatorname{Col} A$, defined as the span of the columns of $A: \operatorname{Col} A=$ Span $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$. As a span, it is clearly a subspace (Theorem 3).
$\operatorname{Col} A=\left\{\mathbf{b}: \mathbf{b}=A \mathbf{x}\right.$ for some \mathbf{x} in $\left.\mathbb{R}^{n}\right\}$, which says that $\operatorname{Col} A$ is the range of the transformation $\mathbf{x} \longrightarrow A \mathbf{x}$.

Example: \#16, p. 234

The null space lives in the row space of the matrix A, and the column space lives in the column space of A.

Example: \#22, p. 235

Linear Transformation: A linear transformation T from a vector space V into a vector space W is a rule that assigns to each vector \mathbf{x} in V a unique vector $T(\mathbf{x})$ in W, such that

1. $\mathrm{T}(\mathbf{u}+\mathbf{v})=\mathrm{T}(\mathbf{u})+\mathrm{T}(\mathbf{v})$
2. $\mathrm{T}(\mathbf{c u})=\mathrm{cT}(\mathbf{u})$

The kernel (or null space) of T is the set of \mathbf{u} such that $T(\mathbf{u})=\mathbf{0}$. The range of T is the set of all vectors in W of the form $T(\mathbf{x})$ for some \mathbf{x} in V.

Example: \#30, p. 235

Examples of linear transformations include matrix transformations, as well as differentiation in the vector space of differentiable functions defined on an interval (a, b).

Example: \#33, p. 235

