MAT225 Section Summary: 2.3
 Characterizations of Invertible Matrices
 Summary

Theorem 8: The Invertible Matrix Theorem
Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

1. A is invertible.
2. A is row equivalent to the identity matrix.
3. A has n pivot positions.
4. The equation $A \mathbf{x}=\mathbf{0}$ has only the trivial solution.
5. The columns of A form a linearly independent set.
6. The linear transformation $\mathbf{x} \rightarrow A \mathbf{x}$ is one-to-one.
7. The equation $A \mathbf{x}=\mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbb{R}^{n}.
8. The columns of A span \mathbb{R}^{n}.
9. The linear transformation $\mathbf{x} \rightarrow A \mathbf{x}$ maps \mathbb{R}^{n} onto \mathbb{R}^{n}.
10. There is an $n \times n$ matrix C such that $C A=I$.
11. There is an $n \times n$ matrix D such that $A D=I$.
12. A^{T} is invertible.

As the author says, "the power of the Invertible Matrix Theorem lies in the connections it provides between so many important concepts...."
\#5, p. 132
\#11, p. 132
\#15, p. 132
\#17, p. 133
\#18, p. 133
\#27, p. 133

A linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be invertible if there exists a function $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that

$$
\begin{align*}
& S(T(\mathbf{x}))=\mathbf{x} \text { for all } \mathbf{x} \text { in } \mathbb{R}^{n} \\
& T(S(\mathbf{x}))=\mathbf{x} \text { for all } \mathbf{x} \text { in } \mathbb{R}^{n} \tag{1}
\end{align*}
$$

Theorem 9: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(\mathbf{x})=A^{-1} \mathbf{x}$ is the unique function satisfying (1).
\#38, p. 133

Definition: A matrix that is nearly - but not quite - singular is said to be ill-conditioned. A matrix that is ill-conditioned causes trouble when the
time comes to invert, and for other calculations. The condition number of a matrix measures how poorly conditioned a matrix is. The identity matrix has a condition number of 1 , and is perfectly well-conditioned. The larger the condition number is, the closer a matrix is to singular (the condition number is infinite for a singular matrix). For a 2×2 matrix, the closer the determinant is to zero, the larger the condition number.
\#42, p. 134

