MAT225 Section Summary: 2.2

The Inverse of a Matrix
Summary
The inverse of a matrix is analogous to the multiplicative reciprical: we want to solve $A \mathbf{x}=\mathbf{b}$, and so we'd like to say that $\mathbf{x}=\mathbf{b} / A$ - but we don't know how to say that with matrices! Let's find out....

First of all, this concept only applies when matrices are square: so only $n \times n$ matrices could possibly be invertible.

Definition: inverse $\operatorname{An} n \times n$ matrix A is invertible if theres exists an $n \times n$ matrix C (the inverse of A) such that

$$
C A=I=A C
$$

The inverse C is denoted A^{-1}, and is unique. A square matrix for which the inverse fails to exist is called singular.

A simple formula exists for the inverse of a two-by-two matrix: if A is given by

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then, provided $a d-b c \neq 0$,

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Otherwise, A is singular. The quantity $a d-b c$ is called the determinant of $A: \operatorname{det}(A)=a d-b c$.
\#1, p. 126 (check!)

Theorem 5: if A is invertible, then $A \mathbf{x}=\mathbf{b}$ has a unique solution for each \mathbf{b} : $\mathbf{x}=A^{-1} \mathbf{b}$.
\#5, p. 126 (check!)

Theorem 6:

1. If A is invertible, then $\left(A^{-1}\right)^{-1}=A$.
(Check \#1).
2. If A and B are $n \times n$ invertible matrices, then so is $A B$, and the inverse of $A B$ is the product of the inverses, in the reverse order:

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

More generally, the inverse of a product of any number of invertible matrices is the product of the inverses in reverse order.
\#15, p. 126.
3. If A is invertible, then so is A^{T}, and the inverse of A^{T} is the transpose of A^{-1} :

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}
$$

Definition: an elementary matrix is one that is obtained by performing a single elementary row operation on an identity matrix. Each elementary matrix is invertible.

If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as $E A$, where the $m \times m$ matrix E is created by performing the same row operation on I_{m}.
\#28, p. 127

Theorem 7: $n \mathrm{x} n$ matrix A is invertible if and only if A is row equivalent
to I_{n}. The elementary row operations that transform A into I_{n} simultaneously transforms I_{n} into A^{-1}.

Theorem 7 suggests a method for finding A^{-1} : row reduce the augmented matrix $\left[A I_{n}\right]$. If A is row equivalent to I_{n}, then $\left[A I_{n}\right]$ is row equivalent to [$I_{n} A^{-1}$].
\#1, p. 126
\#18, p. 126
\#19, p. 126
\#21, p. 126

Note : A^{-1} is generally not calculated: we don't need to know its entries to solve $A \mathbf{x}=\mathbf{b}$ (similar to the notion that we don't need to row reduce to reduced row echelon form to solve: we can stop with a triangular matrix).

