MAT225 Section Summary: 1.8

Introduction to Linear Transformations
 Summary

Definition: transformation: a transformation (or function or mapping) T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^{n} a vector $T(\mathbf{x})$ in \mathbb{R}^{m}. The set \mathbb{R}^{n} is the domain of T, and \mathbb{R}^{m} is the codomain.

For \mathbf{x} in \mathbb{R}^{n}, the vector $T(\mathbf{x})$ is called the image of \mathbf{x} (under the action of T). The set of all images $T(\mathbf{x})$ of vectors \mathbf{x} from the domain is called the range of the transformation T.

A transformation T is linear if it satisfies

- $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for all \mathbf{u}, \mathbf{v} in the domain of T
- $T(c \mathbf{u})=c T(\mathbf{u})$ for all \mathbf{u} and all scalars c.

The matrix product $A \mathrm{x}$ represents a linear transformation, as we have seen. If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, and c is a scalar, then:

1. $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$
2. $A(c \mathbf{u})=c(A \mathbf{u})$

More generally, a linear transformation satisfies

$$
T\left(c_{1} \mathbf{v}_{1}+\ldots+c_{p} \mathbf{v}_{p}\right)=c_{1} T\left(\mathbf{v}_{1}\right)+\ldots+c_{p} T\left(\mathbf{v}_{p}\right)
$$

also known as the principle of superposition.
In this section, several important examples of linear transformation representable by matrices are given, corresponding to

- projections (Example 2),
- shears (Example 3),
- scalings (Example 4 - contractions and dilations), and
- rotations (Example 5).

As you can well imagine, these sorts of transformations are very useful to the computer scientist, among others: if you want to simulate motion in a computer game, for example, you will be constantly projecting, rotating, and scaling objects. But for translations, computer scientists have need of affine transformations, as described in your homework problem \#30, p. 81. Have fun!

