MAT225 Section Summary: 1.4

The Matrix Equation $A \mathbf{x}=\mathbf{b}$

1. Definitions

- product of matrix A and vector x

If A is an $m \times n$ matrix, with columns $\mathbf{a}_{1}, \mathbf{a}_{2} \ldots, \mathbf{a}_{n}$, and if \mathbf{x} is in \mathbb{R}^{n}, then the product of A and \mathbf{x} is the linear combination of the columns of A using the corresponding entries in \mathbf{x} as weights; that is,

$$
A \mathbf{x}=\left[\mathbf{a}_{1} \mathbf{a}_{2} \ldots \mathbf{a}_{n}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]=x_{1} \mathbf{a}_{1}+x_{2} \mathbf{a}_{2}+\ldots+x_{n} \mathbf{a}_{n}
$$

- identity matrix
a matrix with 1's on the diagonal (top left to bottom right), and 0 everywhere else.

2. Theorems/Formulas

Theorem Four (p. 43): Let A be an $m \times n$ matrix. Then the following statements are logically equivalent. That is, for a particular A, either they are all true statements or they are all false.
(a) For each \mathbf{b} in \mathbb{R}^{m}, the equation $A \mathbf{x}=\mathbf{b}$ has a solution.
(b) Each \mathbf{b} in \mathbb{R}^{m} is a linear combination of the columns of A.
(c) The columns of A span \mathbb{R}^{m}.
(d) A has a pivot position in every row.

Theorem Five (p. 45): If A is an $m \times n$ matrix, \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, and c is a scalar, then:
(a) $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}$
(b) $A(c \mathbf{u})=c(A \mathbf{u})$

3. Properties/Tricks/Hints/Etc.

Row-Vector rule for computing $A \mathbf{x}$:
If the product $A \mathbf{x}$ is defined, then the i th entry in the vector $A \mathbf{x}$ (yes, it's a vector!) is the sum of the products of corresponding entries from row i of A and from the vector \mathbf{x}.

4. Summary

Once again, we yet another representation for a system of linear equations - my god, will it never end? This is the last we'll examine, and probably the most important. Theorem four pulls all these forms together. Spans, pivots, linear combinations, matrix equations collide! Matrix/vector multiplication is defined. One form that I find particularly useful is the so-called "row-vector rule": a row of the matrix slams into the variable vector \mathbf{x}, to produce a single entry in the \mathbf{b} vector.

