MAT225 Section Summary: 1.3

Vector Equations

1. Definitions

- vector
a matrix with only a single column ("column vector"). The entries are called the components of the vector.
- zero vector
the vector whose components are all 0 .
- one vector
the vector whose components are all 1.
- scalar multiple of a vector
a product of a constant ("scalar") and a vector, the operation being carried out component-wise.
- vector sum: the vector created by adding two vectors, the sums being carried out component-wise. The sum of vectors can be found using the "parallelogram rule": the butt of vector \mathbf{v}_{2} is placed at the tip of the vector \mathbf{v}_{1}, and the vector from the butt of \mathbf{v}_{1} to the tip of \mathbf{v}_{2} is the sum.
- linear combination of vectors any sum of vectors scaled by coefficients.

Example: \#4, p. 37

- span

the span of a set of vectors $\left\{\mathbf{v}_{1}, \ldots \mathbf{v}_{p}\right\}$ is the subspace generated by linear combinations of the vectors \mathbf{v}_{i}. The span represents the set of vectors that can be solutions of the system

$$
a_{1} \mathbf{v}_{1}+\ldots+a_{p} \mathbf{v}_{p}=\mathbf{b}
$$

Q: What is the geometry of a span? What cases should be considered?
2. Properties/Tricks/Hints/Etc.

- The vector equation

$$
a_{1} \mathbf{v}_{1}+\ldots+a_{p} \mathbf{v}_{p}=\mathbf{b}
$$

has the same solution as the linear system whose augmented matrix is

$$
\left[\begin{array}{llll}
a_{1} & a_{2} & \ldots & a_{p}
\end{array}\right]
$$

Example: ;form method=POST action=http://sappho.nku.edu/tildaroonielonga/cgibin/Octave/octave.cgi¿ ;INPUT NAME=override TYPE=hidden VALUE=demofile ${ }^{\text {i }}$; INPUT NAME=example TYPE=hidden VALUE=mat225day05.9. ;INPUT NAME=color TYPE=hidden VALUE=on \gtreqless jinput TYPE=SUBMIT VALUE='\#9, p. 37 'i, $\mathrm{i} /$ form ${ }_{\mathrm{c}}$

Example: ;form method=POST action=http://sappho.nku.edu/tildaroonielonga/cgibin/Octave/octave.cgi¿ ¡INPUT NAME=override TYPE=hidden VALUE=demofile ${ }^{\text {® }}$; INPUT NAME=example TYPE=hidden VALUE=mat225day05.12 ;INPUT NAME $=$ color TYPE $=$ hidden VALUE $=$ on $_{〔}$; input TYPE=SUBMIT VALUE='\#12, p. 38'i i/formi

- Two vectors are equal only if they have the same dimensions, and their components are the same.
- Algebraic properties of the vector space \mathbb{R}^{n} : for all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^{n} and all scalars c and d,
(a) $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$
(b) $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
(c) $\mathbf{u}+\mathbf{0}=\mathbf{u}$
(d) $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$
(e) $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$
(f) $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$
$(\mathrm{g}) c(d \mathbf{u})=(c d) \mathbf{u}$
(h) $\mathbf{1 u}=\mathbf{u}$

3. Summary

Vectors provide a wonderful way for us to write systems of equations compactly. You should already be familiar with two-d and three-d vectors from calculus classes. We now want to extend notions from those spaces into n-dimensional space. For example, vector addition is carried out component-wise.
The interesting new concept introduced in this section is that of span: roughly, the span of a set of vectors $\left\{\mathbf{v}_{1}, \ldots \mathbf{v}_{p}\right\}$ is the subspace generated by linear combinations of the vectors \mathbf{v}_{i}. The span represents the set of vectors that can be solutions of the system

$$
a_{1} \mathbf{v}_{1}+\ldots+a_{p} \mathbf{v}_{p}=\mathbf{b}
$$

Example: \#21, p. 38

Example: \#27, p. 38

