
The LU and QR Factorizations
Text Reference: Section 2.5, p. 150

The purpose of this set of exercises is to explore a relationship between two matrix
factorizations: the LU factorization and the QR factorization. The first example
illustrates a QR factorization. Recall that a QR factorization of an n×n matrix A is
A=QR, where R is invertible and upper triangular, and Q has the property that QTQ=I.

Example: Let
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Question:
1. Confirm that A=QR and that Q and R meet the criteria given above for a QR
factorization.

A major question is how Q and R are found. One method is to use something called the
Gram-Schmidt process, which is discussed in Section 6.4 of the text. Mathematical and
engineering software packages use other techniques which are beyond the scope of an
introductory course. The following method is a way to find Q and R which depends only
on row reduction.

Step 1: Form the augmented matrix T TA A A 
  and reduce TAA to echelon form without

using row swapping or scaling.

In the example,
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Step 2: Take the transpose of the reduced version of AT at the right of the matrix. Call
this matrix Q̂ , and notice that ˆ ˆTQ Q is a diagonal matrix.

In the example,
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Step 3: Let ˆ ˆTD Q Q= , and let kD be that matrix formed by taking each of the diagonal

elements of D to the kth power. Then Q and R are defined by 1
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−
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Questions:

2. Show that applying the above formulas to
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presented above.

3. Use this process to find a QR factorization of the following matrices.
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The reason that this algorithm works involves the LU factorization of Section 2.5. Let A
be an n×n matrix with linearly independent columns. Then it turns out that the matrix
ATA can be row reduced to echelon form without row interchanges. Thus ATA has an
LU factorization ATA =LU. The matrix Q̂ is defined by 1ˆ ( )TQ A L−= .

Question:

4. Use the fact that ATA =LU to show that 1ˆ ˆ ( )T TQ Q U L−= .

In the example done at the beginning of this exercise set, it happened that ˆ ˆTQ Q is a

diagonal matrix. This happens in general. First, notice that ( )ˆ ˆ ˆ ˆTT TQ Q Q Q= . This means

that the matrix ˆ ˆTQ Q is symmetric; its (i,j) element and its (j,i) element are always equal.

But Exercise 4 states that ( )1ˆ ˆ TTQ Q U L−= . It is also known that U is upper triangular and L

is lower triangular. Thus L-1 is also lower triangular, and (L-1)T must be upper triangular.
Since ˆ ˆTQ Q is the product of two upper triangular matrices, ˆ ˆTQ Q must also be upper

triangular. Finally, since ˆ ˆTQ Q is both symmetric and upper triangular, ˆ ˆTQ Q must be a
diagonal matrix.
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Question:
5. Show that 1ˆ .T TQ L A−= Why does this outcome show that the row reduction of

T TA A A 
  gives us ˆTU Q 

  ? Hint: recall that TAA =LU. Therefore Q̂ may be found by

the method above.

Now define ˆ TR L= and ˆ ˆTD Q Q= , and adopt the meaning of Dk given above.

Questions:

6. Show that ˆ ˆA QR= .

7. Show that A=QR, where 1
2ˆQ QD−= and 1

2 ˆR D R−= . Also show that QTQ=I, and that R
is an invertible upper triangular matrix.

Thus A=QR is a QR factorization of A. While this method is not generally used to find
the QR factorization, it is still interesting to note how the LU factorization was used in
proving our result.

Acknowledgment: This exercise set is adapted from the article "Gram-Schmidt
Orthogonalization by Gauss Elimination" by Lyle Pursell and S. Y. Trimble in the
American Mathematical Monthly, June-July 1991, pp.544-549.
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