
astronomical reckonings right down to the dawn of the Common Era, the 
"learned" numerals of Babylon were a direct inheritance of Sumer, whose 
memory they have perpetuated, directly and indirectly, right down to the 
present day. 

THE POSITIONAL SEXAGESIMAL SYSTEM OF 
THE LEARNED MEN OF MESOPOTAMIA 

Although we cannot be sure about the exact date, the first real idea of 
a positional numeral system arose amongst the mathematicians and 
astronomers of Babylon in or around the nineteenth century BCE. 

The Mesopotamian scholars' abstract numerals were derived from the 
ancient Sumerians' sexagesimal figures, but constituted a system far supe- 
rior to anything else in the ancient world, anticipating modern notation in 
all respects save for the different base and the actual shapes used for the 
numerals. 

Unlike the "ordinary" Assyro-Babylonian notation used for everyday 
business needs, the learned system used base 60 and was strictly positional. 
Thus a group offigures such as 

[3; 1; 2] 

which in modern decimal positional notation would express: 

3x102+1xl0+2 

signified to Babylonian mathematicians and astronomers: 

3 X 602+ 1 X 60 + 2 

Similarly, the sequence [1; 1; 1; 1] which in our system would mean 1 x 103 

+ 1 x 102 + 1 x 10 + 1 (or 1,000 + 100 + 10 + 1) signified in the Babylonian 
system 1 x 603 + 1 x 602+ 1 x 60 + 1 (or 216,000 + 3,600 + 60 +1). 

Instances of this system of numerals have been known since the very 
dawn of Assyriology, in the mid-nineteenth century, and, thanks to exca- 
vations made throughout Mesopotamia and Iraq at that time, many 
examples have come to rest in the great European museums (Louvre, British 
Museum, Berlin) and in the university collections at Yale, Columbia, 
Pennsylvania, etc. The types of document in which the learned system is 
used (and which come from Elam and Mari, as well as from Nineveh, Larsa, 
and other Mesopotamian cities) are for the most part as follows: tables 
intended to assist numerical calculation (e.g. multiplication tables, division 
tables, reciprocals, squares, square roots, cubes, cube roots, etc.); astro- 
nomical tables; collections of practical arithmetical and elementary 
geometrical exercises; lists of more or less complex mathematical problems. 

The system is sexagesimal, which is to say that 60 units of one order of 
magnitude constitute one unit of the next (higher) order of magnitude. The 
numbers 1 to 59 constitute the units of the first order, multiples of 60 
constitute the second order, multiples of 3,600 (sixty sixties) constitute the 
third order, multiples of 216,000 (the cube of 60) constitute the fourth 
order, and so on. 

In fact, there were really only two signs in the system: a vertical wedge 
representing a unit, and a chevron representing 10: 

1 10 

Numbers from 1 to 59 inclusive were built on the principle of addition, 
by an appropriate number of repetitions of the two signs. Thus the 
numbers 19 and 58 were written 

FIG. 13.40A. 

~1 
(1 chevron + 9 wedges) 

T .( 
[1; 10] 

or ~w 
(5 chevrons + 8 wedges) 

So far the system is exactly the same as its predecessors. However, 
beyond 60, the learned system became strictly positional. The number 69, 
for instance, was not written 

but rt 
[l; 9] 

For example, this is how Asarhaddon, king of Assyria from 680 to 669 
BCE, justified his decision to rebuild Babylon (wrecked by his father 
Sennacherib in 689 BCE) rather sooner than the holy writ prescribed: 

After inscribing the number 70 for the years of Babylon's desertion 
on the Tablet of Fate, the God Marduk, in his pity, changed his mind. 
He turned the figures round and thus resolved that the city would 
be reoccupied after only eleven years. [From The Black Stone, trans. 
J. Nougayrol] 

The anecdote takes on its full meaning only in the light of Babylonian 
sexagesimal numbering. To begin with, Marduk, chief amongst the gods in 
the Babylonian pantheon, decides that the city will remain uninhabited 
for 70 years, and, to give full force to his decision, inscribes on the Tablet of 
Fate the signs: 

([1; 10]=1x60+10) 

Thereafter, feeling compassion for the Babylonians, Marduk inverts the 
order of the signs in the expression, thus: 
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(= 1 X 60 + 15 = 75) 
F1G. 13.408. 

-< T 
10 1 (= 10 + 1) 

T -<W 
(1; 15] FIG. 13.42. 

Since the new expression represents the number 11, Marduk decreed that 
the city would remain uninhabited only for that length of time, and could be 
rebuilt thereafter. The anecdote shows that the Mesopotamian public in 
general was at least aware of the rule of position as applied to base 60. 

In the Babylonian system, therefore, the value of a sign varied according 
to its position in a numerical expression. The figure for 1 could for instance 
express 

• a unit in first position from the right, 
• a sixty in the second position, 
• sixty sixties or 602 in third position, 

and so on. 

1 r 11 -<T 
2 1'f 
3 m- 16 <lff 
4 V 

~ 25 
5 w 

27 .((. 
6 lff 
7 • 32 ~TT 
8 " ~ flJ or,or,• 

39 
9 :f 10 < 41 

20 -<< 
~ 46 

30 ~ 
40 -4. or~ 

52 ~lT 
50 4- or* 55 /f-W 
• Abbreviations used in the 59 4! 
later period 

FIG. 13. 41. Representations of the fifty•11i11e sig11ifica11t units of the lea med Mesopotamian 
numeral system 

For instance, to write the number 75 (one sixty and fifteen units) you put 
a "15" in first position and a "1" in second position, thus: 

And to write 1,000 (16 sixties and 40 units) you put a "40" in first 
position and a "16" in second position, thus: 

[17 46 ; 40] 
(= 17 X 602 + 46 X 60 + 40) 
-------------------➔

64,000 

FIG. 13.46. 

(= 16 X 60 + 40 = 1,000) 
[16 40] FIG. 13.43. 

Conversely, an expression such as 

[48 20 12] FIG. 13.44. 

expresses the number: 

48 X 602 + 20 X 60 + 12 = 48 X 3,600 + 20 X 60 + 12 = 174,012 

in exactly the same way as we would express "174,012 seconds" as: 

48 h20m 12s 

Similarly, an expression such as 

T ~~, <«fff -<W 
[1; 50 + 7 ; 30 + 6 ; 10 + 5] or [l; 57; 36; 15] 

FIG. 13.45. 

symbolises, in the minds of the Babylonian scholars, the number: 

1 X 603 + 57 X 602 + 36 X 60 + 15 (= 423,375) 

The next examples come from one of the most ancient Babylonian 
mathematical tablets known (British Museum, BM 13901, dating from 
the period of the first kings of the Babylonian Dynasty), a collection of 
problems relating the solution of the equation of the second degree: 

[1 ; 57 ; 46 ; 40] 
(= 1 X 603 + 57 X 602 + 46 X 60 + 40) 

--------------------------➔
424,000 

FIG. 13.47. 

The difference between Sumerian numbers and the Babylonian "learned" 
system was simply this: the Sumerians relied on addition, the Babylonians 
on the rule of position. This can easily be seen by comparing the Sumerian 
and Babylonian expressions for the two numbers 1,859 and 4,818: 



SUMERIAN SYSTEM BABYLONIAN SYSTEM 

1,859: ~Rf<~ffITT ~ ~* 600 + 600 + 600 + 50 + 9 [30; 59] 
---------------------➔ ---------------➔

(= 30 X 60 + 59) 

4,818: r:;T<T<-<lfff T~<W 
3,600 + 600 + 600 + 18 [1 ; 20 ; 18] 
---------------------➔ ---------------➔

(= 1 X 602 + 20 X 60 + 18) 

FI<;. 13.48A. FIG 13.481J. 

THE TRANSITION FROM SUMERIAN TO 
LEARNED BABYLONIAN NUMERALS 

One of the reasons for the "invention" of the learned Babylonian system 
is easy to understand - it was the "accident" which gave 1 and 60 the 
same written sign in Sumerian, and which originally constituted the main 
difficulty of using Sumerian numerals for arithmetical operations. 

Moreover, the path to the discovery of positionality had been laid out in 
the very earliest traces of Sumerian civilisation. The two basic units were 
represented, first of all, by the same name, ges (see Fig. 8.5A and 8.5B 
above); then, in the second half of the fourth millennium BCE, they were 
represented by objects of the same shape (the small and large cone) (see 
Fig. 10.4 above); then, from 3200-3100 BCE to the end of the third millen- 
nium, by two figures of the same general shape, the narrow notch and the 
thick notch (see Fig. 8.9 above); then, from around the twenty-seventh 
century BCE, by cuneiform marks of the same type, distinguished only by 
their respective sizes; and, finally, from the third dynasty of Ur onwards 
(twenty-second to twentieth century BCE), especially in the writings of 
Akkadian scribes, by the same vertical wedge. 

In other words, as we can see from Asarhaddon's story in The Black Stone, 
and in the Assyro-Babylonian representations of the numbers 70, 80 and 90 
(see Fig. 13. 23 above), the large wedge meaning 60 had evolved in line with 
the general evolution of cuneiform writing so as to be indistinguishable 
from the small wedge meaning 1. 

In everyday usage, that evolution was seen as a problem, which was got 
round by "spelling out" 60 as shu-shi in numbers such as 61, 62, 63, where 
the confusion was potentially greatest (see Fig. 13.14 above), and eventually 
by replacing the sexagesimal unit with a multiple of a decimal one (Fig. 
13.18 above). 

But in the usage of the learned men of Mesopotamia, the graphical 
equivalence of the signs for 1 and 60 gave rise (at least for numbers 
with two orders of magnitude) to a true rule of position. As the following 
notations show: 

SUMERIAN SUMERIAN-AKKADIAN LEARNED 
SYSTEM SYNTHESIS BABYLONIAN 

SYSTEM 

y~<fflT T~fflT l~~,ffT 
60+50+7 60+50+7 [1; (50 + 7)) 

:W~r ff~T T~r 
60 + 60 +40 + 1 60+60+40+1 [4; (40+ l)] 
60+60 60+60 

FIG. 13.49. 

Babylonian scholars realised therefore that the rule or principle could 
be generalised to represent all integers, provided that the old Sumerian 
signs for the multiples and powers of 60 were abandoned. The first to 
go was the 600 (= 60 x 10), for which was substituted as many chevrons 
(= 10) as there were 60s in the number represented. Then the sign for 3,600 
(the square of 60) was dropped, and, since this number was a unit of the 
third sexagesimal order, it was henceforth represented by a single vertical 
wedge. Subsequently the sign for 36,000 was eliminated, and replaced 
by the sign for 10 in the position reserved for the third sexagesimal order, 
and so on. 

For instance, instead of representing the number 1,859 by three signs for 
600 followed by the notation of the number 59 (1,859 = 3 x 600 + 59), 
Babylonian scholars now used [30; 59] (= 30 x 60 + 59), as shown in 
Fig. 13.48 above, which also gives the example of the "old" and "new" 
representations of 4,818. 

The vertical wedge thus came to represent not only the unit, but any and 
all powers of 60. In other words, 1 was henceforth figured by the same 
wedge that signified 60, 3,600, 216,000, and so on, and all IO-multiples of 
the base (600, 36,000, 2,160,000, etc.) by the chevron. 

The discovery was extremely fruitful in itself, but, because of the very 
circumstances in which it arose, it gave rise to many difficulties. 
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THE DIFFICULTIES OF 

THE BABYLONIAN SYSTEM 

Despite their strictly positional nature and their sexagesimal base. learned 
Babylonian numerals remained decimal and additive within each order of 
magnitude. This naturally created many ambiguous expressions and was 
thus the source of many errors. For example, in a mathematical text from 
Susa, a number [10; 15] (that is to say, 10 x 60 + 15. or 615) is written thus: 

<<'ff 
(10; 15) 

FIG. 13.50A. 

However, this expression could also just as easily be read as 

[25] 
-------➔

FIG. 13.50B. 

or [10;10;5) 
-------➔

(= 10 X 6()2 + 10 X 60 + 5) 

It is rather as if the Romans had adopted the rule of position and base 
60, and had then represented expressions such as "10° 3' 1"" (= 36,181") 
by the Roman numerals X III I, which they could easily have confused 
with XI U I (11° 2' 1"), X I III (10° 1' 3") , and so on. Scribes in Babylon 
and Susa were well aware of the problem and tried to avoid it by leaving 
a clear space between one sexagesimal order and the next. So in the same 
text as the one from which Fig. 13.50 is transcribed, we find the number 
[10; 10] (= 10 x 60 + 10), represented as: 

[10 10] 
-------➔

FIG. 13.51. 

The clear separation of the two chevrons eliminates any ambiguity with 
the representation of the number 20. 

In another tablet from Susa the number [1; 1; 12] ( = 1 x 602 + 1 x 60 + 
12) is written 

T T-<TT 
[1 1 : 12) 
--------------➔

F1G. 13.52A. 

in which the clear separation of the leftmost wedge serves to distinguish the 
expression from 

[2 ; 12) 
--------➔

(= 2 X 60 + 12) 

FIG. 13.528. 

In some instances scribes used special signs to mark the separation of the 
orders of magnitude. We find double oblique wedges, or twin chevrons one 
on top of the other, fulfilling this role of"order separator"*: 

FIG. 13.53. 

Here are some examples from a mathematical tablet excavated at Susa: 

f<( x<W 4W 
[1;10; l 18 ; 45) 

Separation sign 
-----------------------➔

FIG. 13.54A. 

(= 1 X 603+ 10 X 6()2 + 18 X 60 + 45) 

.« x TTr ..(}ff'<~~ 
[20 ; l 3 ; 13 ; 21 ; 33) 

Separation sign 
------------------------➔

(= 20 X 604+ 3 X 603+ 13 X 6()2 +21 X 60+ 33) 

FIG. 13.548. 

The sign of separation makes the first number above quite distinct from 
the representation of [I: 10 + 18; 45] (= 1 x 6D2 + 28 x 60 + 45); and for the 
same reason the second number above cannot be mistaken for (20 + 3; 13; 
21; 33] (= 23 X 603 + 13 X 602 + 21 X 60 + 33). 

This difficulty actually masked a much more serious deficiency of the 
system - the absence of a zero. For more than fifteen centuries, Babylonian 
mathematicians and astronomers worked without a concept of or sign for 
zero, and that must have hampered them a great deal. 

In any numeral system using the rule of position, there comes a point 
where a special sign is needed to represent units that are missing from the 
number to be represented. For instance, in order to write the number ten 
using (as we now do) a decimal positional notation, it is easy enough to 
place the sign for 1 in second position, so as to make it signify one unit of 
the higher (decimal) order - but how do we signify that this sign is indeed 
• In commentaries on literary texts. the same sign was used to separate head-words from their explications; 
in multilingual texts, the sign was used to mark the switch from one language to another: and in lists of 
prophecies, the sign was used to separate formulae and to mark the start of an utterance. 



in second position if we have nothing to write down to mean that there is 
nothing in the first position? Twelve is easy-you put "1" in second position, 
and "2" in first position, itself the guarantee that the "1" is indeed in second 
position. But if all you have for ten is a "1" and then nothing ... The 

1 
2 
3 

4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 
15 
16 

17 
18 
19 
20 
21 

22 
23 
24 
25 
26 

F, G. 13 .55. Important mathematical text from Larsa {Senkereh), datillgfrom the period of the 
First Babylonian Dynasty (Louvre, AO 8862, side IV). See Neugebauer, tablet 38. Beneath line 16, 
note the trpresentation of the number 18,144,220 as [1; 24; blank space; 3; 40]. 

problem is obviously acute. Similarly, to write a number like "seven 
hundred and two" in a decimal positional system, you can easily put a "7" 
in third position and a "2" in first position, but it's not easy to tell that 
there's an arithmetical "nothing" between them if there is indeed no thing to 
put between them. 

It became clear in the long run that such a nothing had to be represented 
by something if confusion in numerical calculation was to be avoided. The 
something that means nothing, or rather the sign that signifies the absence 
of units in a given order of magnitude, is, or would one day be represented 
by, zero. 

The learned men of Babylon had no concept of zero around 1200 BCE. 
The proof can be seen on a tablet from Uruk (Louvre AO 17264) which gives 
the following solution: 

"Calculate the square of TT -«:~ and you get fff fJf • 
In decimal numbers using the rule of position, the first of these 

expressions (2 x 60 + 27) is equal to 147, and the square of 147 is 
21,609. This latter number can be expressed in sexagesimal arithmetic as 
6 x 3,600 + 0 x 60 + 9, and should therefore be written in learned 
Babylonian cuneiform numbers with a "9" in first position, a "6" in third 
position, and "nothing" in second position. If the scribe had had a concept 
of zero he would surely have avoided writing the square of [2; 27] as the 
expression [6; 9] which we see on the tablet- since the simplest resolution 
of [6; 9] is 6 x 60 + 9 = 369, which is not the square of 147 at all! 

Another example of the same kind can be found on a Babylonian 
mathematical tablet from around 1700 BCE (Berlin Archaeological 
Museum, VAT 8528), where the numbers [2; O; 20] (= 2 x 602 +Ox 60 + 20 
= 7,220) and [1; O; 10] (= 1 x 602 + 0 x 60 + 10 = 3,610) are represented by 

2 ; 20 1; 10 

FIG. 13.56. 

These notations are manifestly ambiguous, since they could represent, 
respectively, [2; 20] (= 2 x 60 + 20 = 140) and [1; 10] (= 1 x 60 + 10 = 70). 

To overcome this difficulty, Babylonian scribes sometimes left a blank 
space in the position where there was no unit of a given order of magnitude. 
Here are some examples from tablets excavated at Susa (examples A, B, C) 
and from Fig. 13.58 below (example D, line 15). Our interpretations are not 
speculative, since the values given correspond to mathematical relations 
that are unambiguous in context: 



151 
THE DIFFICULTIES OF THE BABYLONIAN SYSTEM 

[:; l ~! 
no units of the 
second order 

FIG. 13.57A. 

T 
[1 ; 0 
-------------➔

FIG. 13.578. 

-«-<lf 
; 35] 

r 
[1 ; 0 ; 40] 
----------➔

FIG. 13.57c. 

n ; 27 ; 0 ; 3 ; 45] 
-------------➔

FIG. 13.570. 

(= 1 X 602 + 0 X 60 + 25) 

(= 1 X 602 + 0 X 60 + 35) 

(= 1 X 602 + 0 X 60 + 40) 
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4 
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8 
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9 
10 
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12 

13 
14 
111 
18 

17 

(= 1 X 604 + 27 X 603 +0 X 602 + 3 X 60 +45) TRANSCRIPTION 

However, this did not solve the problem entirely. For a start, scribes 
often made mistakes or did not bother to leave the space. Secondly, the 
device did not allow a distinction to be made between the absence of units 
in one order of magnitude, and the absence of units in two or more orders 
of magnitude, since two spaces look much the same as one space. And 
finally, since the figure for 4, for instance, could mean 4 x 60, 4 x 602

, 

4 x 603, or 4 x 604, how could you know which order of magnitude was 
meant by a single expression? 

These difficulties were compounded by fractions. Whereas their 
predecessors had given each fraction a specific sign (see Fig. 10.32 above 
for an example from Elam), the Babylonians used the rule of position for 
fractions whose denominator was a power of 60. In other words, positional 
sexagesimal notation was extended to what we would now call the negative 
powers of 60 (60-1 = 1/60, 60-2 = 1/602 = 1/3,600, 60-3 = 1/603 = 
1/216,000, etc.). So the vertical wedge came to signify not just 1, 60, 602

, 

etc., but also 1/60, 1/3,600, and so on. Two wedges could mean 2 or 120 or 
1/30 or 1/1,800; the figure signifying 15 could also signify 1/4 (= 15/60), 
and the number 30 might just as easily mean 1/2. 

Numerals were written from right to left in ascending order of the 
powers of 60, and from left to right in ascending negative powers of 60, 
exactly as we now do with our decimal positional numbering - except that 
in Babylon there was nothing equivalent to the decimal point that we now 
use to separate the integer from the fraction. 

8 
9 

Kl 10 

13 L~ •33 411 411 1 .111 
14 r .211.21.114. 2.15 27.59 48- 49 
16 11 ,27. *. 3 45 
18 ff. 211 • 48 51 35 11. 40 
17 '! 23, 13 411- 

Kl 11 
Kl 12 ' 

* Blank space indicating the absence of units in a given order of magnitude 

F1G. 13.58. Mathematical tablet, 1800-1700 BCE, showing that Babylonian mathematicians 
were already aware of th, properties of right-angl,d triangles (Pythagoras' theorem). If ll'e take the 
numbers in the leftmos: column A, the second column B, and the third column C, we find that the 
numbers obey the relationship 

A=~; B =h;C=c, a11da1 = b2 +c1 
C 

This expresses the rdotionship' by which in a right-angled tria11gle (with sides b and c and 
hypotenuse a) the square of the hypo/muse is equal lo the sum of the squares 011 the other two sides. 
Columbia University, Plimpton 322. Author's ow11 transaiption 


