1. (2pts) Here is the 10th row of Pascal's triangle; fill in the 11th row below it.

|  | 1 |  | 10 |  | 45 |  | 120 |  | 210 |  | 252 |  | 210 |  | 120 |  | 45 |  | 10 |  | 1 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 |  | 11 |  | 55 |  | 165 |  | 330 |  | 462 |  | 462 |  | 330 |  | 165 |  | 55 |  | 11 |  |  |

2. (2pts) What is particularly interesting about this portion of Yanghui's triangle? Translate the numbers in the top row, and explain what we learn about the Chinese bamboo rod number patterns.


Each of the top two pairs add up to make the next number in between them in the row below

One say 34 and one says 35 which isn't symmetrical like the rest of the triangle.
3. ( 2pts) You and your roommate are going to split 10 luscious chocolates (five each) from a fancy box, where each candy is different. You get to go first - lucky you! In how many ways can you choose your five different chocolates? Show how Pascal's triangle gives the answer.

$$
40
$$

$$
C_{5}^{c o s}=\frac{10!(10-5)!}{552}=25 \text { ways }
$$

I can use the triangle to get the answerer by going to the $10^{\text {th }}$ row and 5 Over in the row would be 252.

1. (2pts) Here is the 10th row of Pascal's triangle; fill in the 11th row below it.

|  | 1 |  | 10 |  | 45 |  | 120 |  | 210 |  | 252 |  | 210 |  | 120 |  | 45 |  | 10 |  | 1 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 |  |  |  | 5 | 55 |  | 165 |  | 330 |  | 462 |  | 162 |  | 35 |  |  | 165 |  | 55 |  | 11 |

2. ( 2pts) What is particularly interesting about this portion of Yanghui's triangle? Translate the numbers in the top row, and explain what we learn about the Chinese bamboo rod number patterns.

there is a mistakehere. The answer should be 35 to keep the rule o the symmetry.

The vertical rods signify ones. The horizontal signify tens. The vertical above the horizontal signify ones added to tens. The o above the horizontal rods signifies a zero in the ones place in addition to the tens.
3. (2pts) You and your roommate are going to split 10 luscious chocolates (five each) from a fancy box, where each candy is different. You get to go first - lucky you! In how many ways can you choose your five different chocolates? Show how Pascal's triangle gives the answer.

$$
\begin{aligned}
& C_{5}^{10} \frac{10!}{5!(10 \cdot 5)!} \frac{10!}{5!5!}-\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 8!}{5!5!} \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \\
& \frac{30240}{120} \frac{252}{1}-252
\end{aligned}
$$

1. $(2 \mathrm{pts})$ Here is the 10th row of Pascal's triangle; fill in the 11 th row below it.

|  | 1 |  | 10 |  | 45 |  | 120 |  | 210 |  | 252 |  | 210 |  | 120 |  | 45 |  | 10 |  | 1 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 |  | 11 |  | 55 |  | 165 |  | 330 |  | 462 |  | 462 |  | 330 |  | 165 |  | 55 |  | 11 |  | 1 |

2. (2pts) What is particularly interesting about this portion of Yanghui's triangle? Translate the numbers in the top row, and explain what we learn about the Chinese bamboo rod number patterns.

3. (2pts) You and your roommate are going to split 10 luscious chocolates (five each) from a fancy box, where each candy is different. You get to go first - lucky you! In how many ways can you choose your five different chocolates? Show how Pascal's triangle gives the answer.

4. (2pts) Here is the 10th row of Pascal's triangle; fill in the 11th row below it.

|  | 1 |  | 10 |  | 45 |  | 120 |  | 210 |  | 252 |  | 210 |  | 120 |  | 45 |  | 10 |  | 1 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 |  | 11 |  | 55 |  | 165 |  | 330 |  | 462 |  | 462 |  | 330 |  | 165 |  | 55 |  | 11 |  | 1 |


2. (2pts) What is particularly interesting about this portion of Yanghui's triangle? Translate the numbers in the top row, and explain what we learn about the Chinese bamboo rod number patterns.


1520
15
What is interesting about this portion is that there is an addition error in the second row where the maker of this triangle wrote 34 instead of 35. We learn that each vertical line indicates one so when we have IIIII we actually have 5. We also learn that each horizontal line is a ten so $\stackrel{O}{=}$ is 20 and $\stackrel{\text { II }}{=}$ is 23 etc. 6 thru 9 are interesting because they contain vertical and horizontal lines but they are connected, 6 is $\perp 7$ is 11 etc.
3. (2pts) You and your roommate are going to split 10 luscious chocolates (five each) from a fancy box, where each candy is different. You get to go first - lucky you! In how many ways can you choose your five different chocolates? Show how Pascal's triangle gives the answer.

$$
\begin{aligned}
& C_{5}^{10}=\frac{10!}{5!(10-5)!}=\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot x \cdot 4 \cdot x \cdot x \cdot x}{5 \cdot 4 \cdot 3 \cdot 2 \cdot x \cdot 8 \cdot 4 \cdot x \cdot x \cdot x}=\frac{30240}{120}=252 \text { ways to choose } \\
& C_{0}^{10} C_{1}^{10} C_{2}^{10} C_{3}^{10} C_{4}^{10} C_{5}^{10} C_{6}^{10} C_{7}^{10} C_{8}^{10} C_{9}^{10} C_{10}^{10} \text { - tenthrow of pascals triangle } \\
& \text { as it applies here }
\end{aligned}
$$

1. (2pts) Here is the 10th row of Pascal's triangle; fill in the 11th row below it.

|  | 1 |  | 10 |  | 45 |  | 120 |  | 210 |  | 252 |  | 210 |  | 120 |  | 45 |  | 10 |  | 1 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 |  | 11 |  | 55 |  | 165 |  | 330 |  | 462 |  | 462 |  | 330 |  | 165 |  | 55 |  | 11 |  | 1 |

2. (2pts) What is particularly interesting about this portion of Yanghui's triangle? Translate the numbers in the top row, and explain what we learn about the Chinese bamboo rod number patterns.


The particularly interesting part in this portion ifs that there seems to be an error. The two numbers at the bottom should be the same and the numbers connected to them should add up, but here this isn't the case.

The numbers on the top row are (15) (2) (15).
we lear that a vertical line on top of a horizontal lime translates to the number of horizontal lies beng the 10's place, and the number of vertical lines on top being the 1's place. (III $t 3$ version ines
3. (2pts) You and your roommate are going to split 10 luscious chocolates (five each) from a fancy box, where each candy is different. You get to go first - lucky you! In how many ways can you choose your five different chocolates? Show how Pascal's triangle gives the answer.

$$
C_{5}^{10}=\frac{10!}{5!(10-5)!}=252
$$

$$
\checkmark
$$

The 5 of the $10^{\text {th }}$ row is 252

4. (4pts) Use this version of Pascal's triangle to illustrate where the following sets of numbers appear in the triangle, in a systematic way:
a. The natural (counting) numbers
b. The powers of two
c. The triangular numbers
d. The tetrahedral numbers

4. (4pts) Use this version of Pascal's triangle to illustrate where the following sets of numbers appear in the triangle, in a systematic way:
a. The natural (counting) numbers
b. The powers of two
c. The triangular numbers lin elso f
d. The tetrahedral numbers line(s) of $1,4,10$

4. (4pts) Use this version of Pascal's triangle to illustrate where the following sets of numbers appear in the triangle, in a systematic way:
A. The natural (counting) numbers
b. The powers of two
c. The triangular numbers
d. The tetrahedral numbers


