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Abstract

There are two fundamental ideas at work here. The first is finding a best-fit to an
over-determined problem (over-determined means that we have too many constraints
for our ability to fit a given model).

The second essential idea is that of using a linear approximation or method to
attempt a solution to a non-linear problem. We will rely on linear approximations,
and iteration, hoping to get a good approximation to the true solution of the non-
linear problem.

1 Linear regression

Consider a set of data values of the form {xi, yi}i=1,...,n. We think of y as a function of x,
i.e. y = f(x; θ), and seek to estimate the optimal parameters θ of the model f(x; θ). For
example, f might be parameterized by a slope m and an intercept b, as in

y = f(x; θ) = mx + b

Then θ would be the vector

θ =

[

m
b

]

We anticipate the presence of error, often assumed to be of the form

yi = mxi + b + ǫi

The upshot is that the error makes the data straddle the line (rather than fit it exactly).
We generally try to find the parameters using the principle of “least squares”: that is,

we try to minimize the “sum of the squared errors”, or the function

S(

[

m
b

]

) =
n
∑

i=1

ǫ2

i =
n
∑

i=1

(yi − (mxi + b))2
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If we take partial derivatives of this expression with respect to the parameters, and set
them to zero, we obtain two equations:

−2
n
∑

i=1

(yi − (mxi + b))xi = 0 and − 2
n
∑

i=1

(yi − (mxi + b)) = 0

They look a lot simpler in vector form, however:

[x 1]′y = [x 1]′[x 1]

[

m
b

]

If we define
X = [x 1]

and write the vector of parameters as θ, then we can write the system more succinctly as

X ′y = X ′Xθ

With any luck, the matrix product X ′X is invertible, so, formally, the parameters are esti-
mated to be

θ = (X ′X)−1X ′y

This form readily generalizes, of course, to the case where there are p independent predictor
variables, rather than the single variable x. If we include the “one vector” 1, then we will
have an intercept term in the linear model; otherwise, no.

2 Non-Linear Regression

2.1 Newton’s Method

We consider a variation of non-linear regression, which is essentially a multivariate form
of Newton’s method; so we begin there. The idea behind Newton’s method is an important
one: we attempt to solve a non-linear problem by successive linear approximations. That is,
we will solve a linear problem to approach the solution of the non-linear problem; then we
do it again, and again, and again – until satisfied.

Newton’s method is specifically a procedure designed to iteratively approach the root of
a non-linear function. Specifically, we attempt to find the root of a function f(x) by

a. starting with a good guess x0, and

b. iteratively improving that guess.

So how does one “improve iteratively”? We use the linearization of f about our initial guess
x0:

y − f(x0) = f ′(x0)(x − x0)
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Set y = 0, and solve for x:

x = x0 −
f(x0)

f ′(x0)

This is an iterative scheme for successive improvement of our initial guess. It might converge
to a true solution of the non-linear problem, which is our hope.

2.2 Non-linear Regression using Taylor Series Expansion

The linearization
y − f(x0) = f ′(x0)(x − x0)

can be brought to bear in our regression problem, as follows: we seek a fit to the data using
the model form given by the function f , with parameters θ. That is, for a given data location
i, we have

yi = f(xi; θ) + ǫi

Once again our objective is to minimize a sum of squared errors over n data locations:

S(θ) =
n
∑

i=1

ǫ2

i =
n
∑

i=1

(yi − f(xi; θ))
2

If we take partials of S with respect to the p parameters, we obtain p equations, such as

∂S(θ)

∂θj

= −2
n
∑

i=1

(yi − f(xi; θ))
∂f(xi; θ)

∂θj

We then set them equal to zero and hope to find a global minimum (there is no guarantee).
Suppose that we have an initial guess for the parameters, θ0, and are interested in im-

proving it. The trick to make use of this result to find an improvement to θ0. Once again,
the trick is to use the linearization, and to use our guess θ0.

We replace f(xi; θ) in the summation by the linearization of f with respect to the p
parameters θj of θ:

f(xi; θ) = f(xi; θ0) +
p
∑

k=1

∂f(xi; θ)

∂θk
|θ=θ0(θk − θk0)

Then

0 =
n
∑

i=1

(

yi − f(xi; θ0) −
p
∑

k=1

∂f(xi; θ)

∂θk

|θ=θ0(θk − θk0)

)

∂f(xi; θ)

∂θj

|θ=θ0

There are p equations (one for each of the p parameters). The only things unknown in these
systems of equations are the θj (that is, the vector θ ). This leads to a linear system of the
form

[Zi]
′(yi − f(xi; θ0) = [Zi]

′[Zi](θ − θ0)
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where

[Zi] =

[

∂f(xi; θ)

∂θ1

, . . . ,
∂f(xi; θ)

∂θp

]

θ=θ0

the row-vector of partials evaluated at the ith data location and using the parameter estimates
θ0.

When we combine these systems for each of the n data locations, we end up with the
linear system

Z ′(y − f(., θ0)) = Z ′Z(θ − θ0)

where by f(., θ0) we mean the model form evaluated at the n data locations, with the current
best parameter estimates θ0.

Our revised estimate for the parameters is thus given formally as

θ = (Z ′Z)−1Z ′(y − f(., θ0)) + θ0

An alternative way to derive this same system of equations (again based on the lineariza-
tion) is as follows: assuming that

yi = f(xi; θ),

we have that

wi ≡ yi − f(xi; θ0) =
p
∑

i=1

∂f(xi; θ)

∂θi
|θ=θ0(θi − θi0)

which is better written in matrix form as

w = Zβ

where Z is a constant matrix, and β = θ − θ0.
This is just a linear regression problem, which we solve for β:

β = (Z ′Z)−1Z ′w

and then our next estimate for θ is given by

θ = β + θ0

Now iterate, as long as we’re converging....

3 Case Study

When we die, our bodies become rigid (rigor mortis sets in). Niderkorn’s (1872) obser-
vations on 113 bodies provides the main reference database for the development of rigor

mortis and is commonly cited in textbooks. Via a series of log transformations I was able to
fit a lovely model to this somewhat unlovely data, for the proportion p(t) of bodies in rigor
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mortis after t hours. It is illustrated in the graph below: the general two-parameter model
that I tried is

p(t) = e(−α/tβ)

I don’t know how I thought of this, except that we’d been looking at models of compositions
with exponentials, and I had a feeling that this sort of model might work. I wanted a model
with an asymptote of 1, for sure. I also wanted the function to have a zero derivative at the
origin, and to remain flat for awhile. Model building is a mysterious and black art. What
model might you propose?

Models are often compared against each other based on the number of parameters they
require, how much predictive power they have, whether they make intuitive sense, whether
the parameters are interpretable, etc. When you find your model bring it over to my house,
and we’ll race them!

Figure 1: The linear regression results.
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Figure 2: The non-linear regression results appear to be a slight improvement.

There are log transformations that nearly permit our problem to be resolved using linear
regression. Let’s proceed as follows:

ln(p(t)) = −α/tβ

and then
ln(−(ln(p(t)))) = ln(α) − β ln(t)

(where we take the negative to the other side because the proportion p(t) itself is between
0 and 1, which means that the first log gives a negative – and the second log would not be
defined otherwise for negatives).

We can use our data and linear regression to estimate the parameters, if we define “new
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data” from the old via
y = ln(−(ln(p(t))))
b = ln(α)

m = −β
x = ln(t)

So we log-transform the hours, and do two log-transforms of the cumulative proportion data1,
after which linear regression is performed to get the estimated parameters. This process is
encoded in xlispstat as follows:

(setq

hours ’(2 3 4 5 6 7 8 9 10 11 12 13)

bodies ’(2 14 31 14 20 11 7 4 7 1 1 2)

;; there are a total of 114 bodies

cumulatives ’(2 16 47 61 81 92 99 103 110 111 112 114)

proportions (/ cumulatives 120)

;; new we perform linear regression (with intercept):

reg (regress (list (ln hours)) (ln (- (ln proportions))))

;; and ask reg for its coeficients:

coefficients (send reg :coef-estimates)

)

which resulted in the coefficients (and hence the model)

p(t) = e(−26.28/t2.39)

Now we’d like to compare our result with that obtained using non-linear regression. One
of the advantages of non-linear regression is that the ad hoc choice of 120 as the number of
bodies to divide by is eliminated by estimation of a multiplicative constant in front of the
model:

c(t) = γe(−α/tβ)

where c is the cumulative number of bodies in rigor mortis at time t, and γ is a multiplicative
constant (which we’ll guess is about 120, to start). The other parameters are estimated by
their values from linear regression.

Here is the xlispstat code which implements this procedure:

1which we obtain by the “trick” of dividing the cumulative number of bodies by 120, which is slightly
more than the total number of bodies. If we divided the cumulative bodies by the total number of bodies
(114), then our last cumulative value would give rise to a proportion of 1, which will lead to a zero after the
first log transformation, and hence the second log would not be defined.
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;; initial values (solutions of linearization)

(setq

gamma 120

alpha (exp (first coefficients))

beta (- (second coefficients))

nreg (nreg-model

(lambda(theta)

(let (

(gamma (elt theta 0))

(alpha (elt theta 1))

(beta (elt theta 2))

)

(* gamma (exp (- (/ alpha (^ hours beta)))))

)

)

(cumsum bodies)

(list gamma alpha beta)

)

)

Residual sum of squares: 47.4054

Coefficients: (124.382 19.424650502192684 2.127669245585588)

Residual sum of squares: 40.9828

Coefficients: (124.42338726758184 21.334959045370884 2.1745553351139515)

Residual sum of squares: 40.7887

Coefficients: (124.3834661473006 21.518819388090982 2.177378350279522)

Residual sum of squares: 40.7887

Coefficients: (124.3819389982478 21.522880354505403 2.1774842047896654)

Residual sum of squares: 40.7887

Coefficients: (124.38193962238628 21.522890934820094 2.1774844349107663)

Least Squares Estimates:

Parameter 0 124.382 (2.87169)

Parameter 1 21.5229 (3.99613)

Parameter 2 2.17748 (0.140507)

Sigma hat: 2.12887

Number of cases: 12

Degrees of freedom: 9

3.1 Non-linear regression as multivariate Newton’s Method in

Lisp

Now we’ll implement the scheme described above to carry out non-linear regression as
a succession of linear regressions in this case study. We begin by defining the model form
(called f below). Following that, we compute the partial derivatives (and name them). In
xlispstat I can do that as follows:
(defun f(x gamma alpha beta)

(* gamma (exp (- (/ alpha (^ x beta)))))

)

(derfunc fpg f gamma)

(derfunc fpa f alpha)

(derfunc fpb f beta)

Now we’ll use the model form, and the data, to compute estimates for the responses (the
cumulatives minus the estimates). We use the three vectors of the partials evaluated at the
data (hours) and at the current best parameter values (the vector containing γαβ).
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;; find parameters for cumulatives versus hours:

(let* (

(n (length hours))

(gammas (repeat gamma n))

(alphas (repeat alpha n))

(betas (repeat beta n))

(estimates (mapcar #’f hours gammas alphas betas))

reg new-coefs coefs

)

(setq reg (regress (list

;; these are vectors of partial derivative values

(mapcar #’fpg hours gammas alphas betas)

(mapcar #’fpa hours gammas alphas betas)

(mapcar #’fpb hours gammas alphas betas)

)

(-

(cumsum bodies)

estimates

)

:intercept nil

)

new-coefs (send reg :coef-estimates)

coefs (+ (list gamma alpha beta) new-coefs)

gamma (first coefs)

alpha (second coefs)

beta (third coefs)

)

(list gamma alpha beta)

)

The first six iterates are given in the appendix. They agree with the results obtained using
the non-linear regression program used above.

If we redo the linear regression analysis using the value of 124.38 rather than 120 (which
was ad hoc), we see that the linear regression results improve a little (a smidgen, but then
they didn’t have much room for improvement – they’re already excellent):

Linear Regression: Estimate SE Prob

Constant 2.96654 (8.280051E-2) 0.00000

Variable 0 -2.12767 (4.222013E-2) 0.00000

R Squared: 0.996078

Sigma hat: 8.198243E-2

Number of cases: 12

Degrees of freedom: 10

versus

Linear Regression: Estimate SE Prob

Constant 3.26870 (0.129672) 0.00000

Variable 0 -2.39415 (6.612010E-2) 0.00000

R Squared: 0.992431

Sigma hat: 0.128391

Number of cases: 12

Degrees of freedom: 10

9



4 Appendix

Non-linear regression results, obtained by iterating an approximating linear system. Ob-
serve how the estimates are tending towards zero, and how the SEs are converging to the
values given by the non-linear regression program.
Linear Regression: Estimate SE Prob

Variable 0 4.138723E-2 (2.91773) 0.98899

Variable 1 1.91031 (3.50720) 0.59921

Variable 2 4.688609E-2 (0.138536) 0.74279

R Squared: 0.119552

Sigma hat: 2.12964

Number of cases: 12

Degrees of freedom: 9

(124.42338723437011 21.334959074739725 2.174555336396219)

Linear Regression: Estimate SE Prob

Variable 0 -3.992119E-2 (2.86921) 0.98920

Variable 1 0.183860 (3.94951) 0.96389

Variable 2 2.823019E-3 (0.140285) 0.98438

R Squared: 3.655313E-3

Sigma hat: 2.12887

Number of cases: 12

Degrees of freedom: 9

(124.38346604819884 21.51881954326433 2.1773783557662942)

Linear Regression: Estimate SE Prob

Variable 0 -1.527102E-3 (2.87184) 0.99959

Variable 1 4.060895E-3 (3.99513) 0.99921

Variable 2 1.058519E-4 (0.140502) 0.99942

R Squared: 0.000000

Sigma hat: 2.12887

Number of cases: 12

Degrees of freedom: 9

(124.38193894645649 21.522880438343165 2.1774842077153984)

Linear Regression: Estimate SE Prob

Variable 0 7.135111E-7 (2.87169) 1.00000

Variable 1 1.043788E-5 (3.99612) 1.00000

Variable 2 2.251319E-7 (0.140507) 1.00000

R Squared: 0.000000

Sigma hat: 2.12887

Number of cases: 12

Degrees of freedom: 9

(124.38193965996763 21.522890876219947 2.177484432847311)

Linear Regression: Estimate SE Prob

Variable 0 -2.201135E-8 (2.87169) 1.00000

Variable 1 6.411643E-8 (3.99613) 1.00000

Variable 2 1.922862E-9 (0.140507) 1.00000
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R Squared: 0.000000

Sigma hat: 2.12887

Number of cases: 12

Degrees of freedom: 9

(124.38193963795628 21.522890940336374 2.177484434770173)

Linear Regression: Estimate SE Prob

Variable 0 1.405989E-10 (2.87169) 1.00000

Variable 1 -5.322782E-11 (3.99613) 1.00000

Variable 2 -3.853513E-12 (0.140507) 1.00000

R Squared: 0.000000

Sigma hat: 2.12887

Number of cases: 12

Degrees of freedom: 9

(124.38193963809688 21.522890940283148 2.1774844347663196)
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