Lab for the Fundamental Theorem of Calculus (part II)

Big picture: defining functions in terms of integrals.

We now know how to evaluate definite integrals $\int_{a}^{b} f(x) d x$, if we have formulas for $f(x)$ and know an anti-derivative for f (let's call it F):

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

So evaluation's easy in this case.
The second part of the Fundamental Theorem of Calculus gives us a very impressive new tool: it allows us to define new kinds of functions using integrals. What does this mean?

Consider a definite integral (and notice that we're going to switch x for a new dummy variable of integration, t - this is because we love to use x for our variable in functions):

$$
\int_{a}^{b} f(t) d t=F(b)-F(a)
$$

what's so special about the letter b ? Could we just as well write

$$
\int_{a}^{x} f(t) d t=F(x)-F(a)
$$

If so, we can think of x as a variable, and so we've used the definite integral to define a new function, based on $f(t)$.

This function is an anti-derivative of f :

$$
F(x)=\int_{a}^{x} f(t) d t+F(a)
$$

Hence, $F^{\prime}(x)=f(x)$.

THEOREM 1 Fundamental Theorem of Calculus, Part II Let $f(x)$ be a continuous function on $[a, b]$. Then $A(x)=\int_{a}^{x} f(t) d t$ is an antiderivative of $f(x)$, that is, $A^{\prime}(x)=f(x)$, or equivalently,

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

Furthermore, $A(x)$ satisfies the initial condition $A(a)=0$.

Of course our author uses A, rather than F, to emphasize that we get an anti-derivative. The basic idea is that we can use the integral, which was derived to represent the area under a curve, as a means to creating or representing anti-derivatives for functions.

This is a novel concept: we've been thinking of integrals as representing area under a curve. Now we're going to "liberate" an endpoint - turn it into a variable, instead of thinking of it as a fixed constant, and so the answer becomes a function.

One important application where we see functions defined in terms of integrals is in probability. I've studied cicada-killer wasps, and so we've studied populations of cicadas. The figure below shows the distribution of sizes of cicadas in a particular part of Florida, modeled on real data. At left is the probability density function $\rho(x)$. As a probability

density function it has some important properties, like $\rho(x) \geq 0$ and

$$
\int_{-\infty}^{\infty} \rho(x) d x=1
$$

What this says is that every cicada is somewhere: the probability is 1 that you'll find a cicada with wing length somewhere between $-\infty$ and ∞ (big deal, right?! We knew that...).

At right in the first figure we illustrate the probability of finding a cicada in a small band of right wing lengths between t and $t+\Delta t$ (I should have used Δ, but my software won't plot Greek letters in figures!). We can think of this tiny probability (i.e. area) as an integral:

$$
\Delta P(t) \equiv P(t \leq x \leq t+\Delta t)=\int_{t}^{t+\Delta t} \rho(x) d x
$$

In general, we define the Cumulative Distribution Function P as

$$
P(t)=\int_{0}^{t} \rho(x) d x
$$

(we can start our lower limit at 0 , rather than $-\infty$, because no RWL is negative). In the second set of figures below, we have at left the probability that a cicada has a RWL between 0 and t (i.e., $P(0 \leq x \leq t)$, which is just $P(t))$. At right in the figure is a plot of $\rho(x)$ and $P(x)$ together. One is the density, and the other the cumulative function.

Problem 1: Now, to make the connection elaborated in the FTC II, consider the plot of $P(t \leq x \leq t+\Delta t)$. In the following "equations", insert either $=$ or \approx to make each mathematical phrase correct:
1.

$$
\Delta P(t) \equiv P(t+\Delta t)-P(t) \quad \Delta t \cdot \rho(t)
$$

What does the right-most quantity represent graphically?

2. Relate the following four quantities using $\equiv,=$, or \approx :

$$
P^{\prime}(t) \quad \frac{\Delta P(t)}{\Delta t} \quad \frac{P(t+\Delta t)-P(t)}{\Delta t} \quad \rho(t)
$$

3. Now, in the limit as $\Delta t \longrightarrow 0$, we have

$$
P^{\prime}(t) \quad \lim _{\Delta t \longrightarrow 0} \frac{\Delta P(t)}{\Delta t} \quad \lim _{\Delta t \longrightarrow 0} \frac{P(t+\Delta t)-P(t)}{\Delta t} \quad \rho(t)
$$

Problem 2: justify the shapes of the graphs of ρ and P, relative to each other, as seen in the figure above (at right). What should their relationship be?

