
Lab for the Fundamental Theorem of Calculus (part II)

Big picture: defining functions in terms of integrals.

We now know how to evaluate definite integrals
∫

b

a

f(x)dx, if we have formulas for f(x)

and know an anti-derivative for f (let’s call it F ):

∫
b

a

f(x)dx = F (b) − F (a)

So evaluation’s easy in this case.
The second part of the Fundamental Theorem of Calculus gives us a very impressive new

tool: it allows us to define new kinds of functions using integrals. What does this mean?
Consider a definite integral (and notice that we’re going to switch x for a new dummy

variable of integration, t – this is because we love to use x for our variable in functions):

∫
b

a

f(t)dt = F (b) − F (a)

what’s so special about the letter b? Could we just as well write

∫
x

a

f(t)dt = F (x) − F (a)

If so, we can think of x as a variable, and so we’ve used the definite integral to define a new
function, based on f(t).

This function is an anti-derivative of f :

F (x) =
∫

x

a

f(t)dt + F (a)

Hence, F ′(x) = f(x).

Of course our author uses A, rather than F , to emphasize that we get an anti-derivative.
The basic idea is that we can use the integral, which was derived to represent the area under
a curve, as a means to creating or representing anti-derivatives for functions.

This is a novel concept: we’ve been thinking of integrals as representing area under a
curve. Now we’re going to “liberate” an endpoint – turn it into a variable, instead of thinking
of it as a fixed constant, and so the answer becomes a function.
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One important application where we see functions defined in terms of integrals is in
probability. I’ve studied cicada-killer wasps, and so we’ve studied populations of cicadas.
The figure below shows the distribution of sizes of cicadas in a particular part of Florida,
modeled on real data. At left is the probability density function ρ(x). As a probability
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density function it has some important properties, like ρ(x) ≥ 0 and
∫

∞

−∞

ρ(x)dx = 1

What this says is that every cicada is somewhere: the probability is 1 that you’ll find a
cicada with wing length somewhere between −∞ and ∞ (big deal, right?! We knew that...).

At right in the first figure we illustrate the probability of finding a cicada in a small band
of right wing lengths between t and t + ∆t (I should have used ∆, but my software won’t
plot Greek letters in figures!). We can think of this tiny probability (i.e. area) as an integral:

∆P (t) ≡ P (t ≤ x ≤ t + ∆t) =
∫

t+∆t

t

ρ(x)dx

In general, we define the Cumulative Distribution Function P as

P (t) =
∫

t

0

ρ(x)dx

(we can start our lower limit at 0, rather than −∞, because no RWL is negative). In the
second set of figures below, we have at left the probability that a cicada has a RWL between
0 and t (i.e., P (0 ≤ x ≤ t), which is just P (t)). At right in the figure is a plot of ρ(x) and
P (x) together. One is the density, and the other the cumulative function.

Problem 1: Now, to make the connection elaborated in the FTC II, consider the plot

of P (t ≤ x ≤ t + ∆t). In the following “equations”, insert either = or ≈ to make each
mathematical phrase correct:

1.

∆P (t) ≡ P (t + ∆t) − P (t) ∆t · ρ(t)

What does the right-most quantity represent graphically?

2



P
ro

ba
bi

lit
y

0.
00

0
0.

10
0

0.
20

0
0.

30
0

Cicada Wing Size (RWL)

20 30 40 50 60

Probability Density Function (modeled from data) for Cicadas in Florida

t

Probability that a cicada

has RWL between 0 and t

P
ro

ba
bi

lit
y

0.
00

0
0.

20
0

0.
40

0
0.

60
0

0.
80

0
1.

00

Cicada Wing Size (RWL)

20 30 40 50 60

Probability Density Function (in black) and Cumulative Probability Function (in gray)

2. Relate the following four quantities using ≡, =, or ≈:

P ′(t)
∆P (t)

∆t

P (t + ∆t) − P (t)

∆t
ρ(t)

3. Now, in the limit as ∆t −→ 0, we have

P ′(t) lim
∆t−→0

∆P (t)

∆t
lim

∆t−→0

P (t + ∆t) − P (t)

∆t
ρ(t)

Problem 2: justify the shapes of the graphs of ρ and P , relative to each other, as seen in

the figure above (at right). What should their relationship be?
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