Calculus I: General Concepts

Andy Long

December 6, 2012

1 Functions

- The function zoo: polynomial, rational, trig, power, root, etc.
- domain, range
- symmetry (even, odd)
- asymptotes (vertical, horizontal, slant)
- increasing, decreasing
- concavity
- continuities and discontinuities (connectedness)
- differentiability (smoothness)
- one-to-one, invertible (pass horizontal and vertical line tests)
- compositions of functions
- transformations (shifts and stretches) of functions

2 Limits

- limit laws
- tangent versus secant lines
- limits at infinity, and infinite limits
- continuity and discontinuity
- Intermediate value theorem
- pinching or squeeze theorem

3 Derivatives and differentiation

- The limit definition of the derivative function (the most important definition in calculus!):

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- relationship between the size and sign of the derivative of f and the shape of the graph of f
- sum, difference, product, quotient rules
- chain rule (derivatives of compositions)
- implicit differentiation
- related rates problems
- optimization problems
- antiderivatives
- higher derivatives
- linearization
- Mean value theorem (Rolle's theorem on a tilt)

4 Optimization

- Setting up the problem is the hard part! Draw pictures....
- extrema (maxima, minima; local and global)
- first and second derivative tests
- check endpoints!

5 Integrals and Integration

- Motivation (the beginning, but not the end!): areas
- using rectangles via approximation rules to estimate areas (left, right, midpoint, trapezoidal - ultimately Simpson's rule).
- When you have two estimates for a quantity, you have a third - some average of the two. The average may be weighted, depending on the confidence you have in the two estimates.
- taking a limit and defining the area exactly
- Fundamental Theorem of Calculus (tying derivates together with integrals): Suppose f is continuous on $[a, b]$.

1. If $g(x)=\int_{a}^{x} f(t) d t$, then $g^{\prime}(x)=f(x)$.
2.

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f.

- substitution rule (the chain rule in reverse)
- integrals as more general than simply areas: so

$$
S=\int d S
$$

means that in computing quantity S (area, length, volume, time, dollars, etc.) we simply add up lots of tiny amounts (infinitesimals) of S. Examples:

- areas between two curves
- An example of an important extension of integrals is volume calculations:

$$
V=\int d V=\int A(x) d x=\int C(x) d x h(x)
$$

We either slice into cross-sections of known area $A(x)$, or we chop into cylinders of known circumference $C(x)$ and height $h(x)$.

- Here's the sort of application one might do someday as an engineer. The time to arrive at State Route 126 from Exit 3 on I-75 is

$$
T=\int d T=\int_{\text {Exit } 3 \text { on I-75 }}^{\text {State route } 126} \frac{d x}{v(x)}
$$

where $v(x)$ is the average automobile velocity at every point along the road from point a to point b. ($d t$ was calculated using the DiRT formula - don't forget the dirt formula!). To compute a time, we add up lots of little times $d T$, which are computed from an instantaneous velocity over a very short distance $d x$.

- using symmetry to help calculate integrals
- definite versus indefinite integrals

