The AcroT_EX Web Site, 2000

A Slide Show Demonstrating the Tangent Line Problem

D. P. Story The Department of Mathematics and Computer Science The University of Akron, Akron, OH

Problem: Given a point P(a, f(a)), we want to define and calculate ...

x				
$m_{ m sec}$				

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

x				
$m_{ m sec}$				

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3				
$m_{ m sec}$					

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot Q(x, f(x)).
- Draw the secant line through P and Q. The slope of this secant line is

$$m_{\rm sec} = \frac{f(x) - f(a)}{x - a}$$

x	3				
$m_{ m sec}$	-2.5				

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot Q(x, f(x)).
- Draw the secant line through P and Q. The slope of this secant line is

$$m_{\rm sec} = \frac{f(x) - f(a)}{x - a}$$

Repeat.

x	3				
$m_{ m sec}$	-2.5				

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3	2.5			
$m_{ m sec}$	-2.5				

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot Q(x, f(x)).
- Draw the secant line through P and Q. The slope of this secant line is

$$m_{\rm sec} = \frac{f(x) - f(a)}{x - a}$$

x	3	2.5			
$m_{ m sec}$	-2.5	-2			

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot Q(x, f(x)).
- Draw the secant line through P and Q. The slope of this secant line is

$$m_{\rm sec} = \frac{f(x) - f(a)}{x - a}$$

Repeat.

x	3	2.5			
$m_{ m sec}$	-2.5	-2			

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3	2.5	2.25			
$m_{ m sec}$	-2.5	-2				

- Choose a point x near a and plot Q(x, f(x)).
- Draw the secant line through P and Q. The slope of this secant line is

$$m_{\rm sec} = \frac{f(x) - f(a)}{x - a}$$

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3	2.5	2.25			
$m_{ m sec}$	-2.5	-2	-1.75			

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot Q(x, f(x)).
- Draw the secant line through P and Q. The slope of this secant line is

$$m_{\rm sec} = \frac{f(x) - f(a)}{x - a}$$

Repeat.

x	3	2.5	2.25			
$m_{ m sec}$	-2.5	-2	-1.75			

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3	2.5	2.25	2		
$m_{ m sec}$	-2.5	-2	-1.75			

- Choose a point x near a and plot Q(x, f(x)).
- Draw the secant line through P and Q. The slope of this secant line is

$$m_{\rm sec} = \frac{f(x) - f(a)}{x - a}$$

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3	2.5	2.25	2		
$m_{ m sec}$	-2.5	-2	-1.75	-1.5		

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot Q(x, f(x)).
- Draw the secant line through P and Q. The slope of this secant line is

$$m_{\rm sec} = \frac{f(x) - f(a)}{x - a}$$

Repeat.

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3	2.5	2.25	2		
$m_{ m sec}$	-2.5	-2	-1.75	-1.5		

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3	2.5	2.25	2	1.75		
$m_{ m sec}$	-2.5	-2	-1.75	-1.5			

- Choose a point x near a and plot Q(x, f(x)).
- Draw the secant line through P and Q. The slope of this secant line is

$$m_{\rm sec} = \frac{f(x) - f(a)}{x - a}$$

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3	2.5	2.25	2	1.75		
$m_{ m sec}$	-2.5	-2	-1.75	-1.5	-1.25		

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot Q(x, f(x)).
- Draw the secant line through P and Q. The slope of this secant line is

$$m_{\rm sec} = \frac{f(x) - f(a)}{x - a}$$

Repeat.

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3	2.5	2.25	2	1.75		
$m_{ m sec}$	-2.5	-2	-1.75	-1.5	-1.25		

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3	2.5	2.25	2	1.75	1.6	
$m_{ m sec}$	-2.5	-2	-1.75	-1.5	-1.25		

- Choose a point x near a and plot Q(x, f(x)).
- Draw the secant line through P and Q. The slope of this secant line is

$$m_{\rm sec} = \frac{f(x) - f(a)}{x - a}$$

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3	2.5	2.25	2	1.75	1.6	
$m_{ m sec}$	-2.5	-2	-1.75	-1.5	-1.25	-1.1	

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot Q(x, f(x)).
- Draw the secant line through P and Q. The slope of this secant line is

$$m_{\rm sec} = \frac{f(x) - f(a)}{x - a}$$

Repeat.

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3	2.5	2.25	2	1.75	1.6	
$m_{ m sec}$	-2.5	-2	-1.75	-1.5	-1.25	-1.1	

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3	2.5	2.25	2	1.75	1.6	1.55	
$m_{ m sec}$	-2.5	-2	-1.75	-1.5	-1.25	-1.1		

- Choose a point x near a and plot Q(x, f(x)).
- Draw the secant line through P and Q. The slope of this secant line is

$$m_{\rm sec} = \frac{f(x) - f(a)}{x - a}$$

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3	2.5	2.25	2	1.75	1.6	1.55	
$m_{ m sec}$	-2.5	-2	-1.75	-1.5	-1.25	-1.1	-1.05	

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot Q(x, f(x)).
- Draw the secant line through P and Q. The slope of this secant line is

$$m_{\rm sec} = \frac{f(x) - f(a)}{x - a}$$

Repeat.

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3	2.5	2.25	2	1.75	1.6	1.55	
$m_{ m sec}$	-2.5	-2	-1.75	-1.5	-1.25	-1.1	-1.05	

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3	2.5	2.25	2	1.75	1.6	1.55	1.501
$m_{ m sec}$	-2.5	-2	-1.75	-1.5	-1.25	-1.1	-1.05	

- Choose a point x near a and plot Q(x, f(x)).
- Draw the secant line through P and Q. The slope of this secant line is

$$m_{\rm sec} = \frac{f(x) - f(a)}{x - a}$$

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5.

x	3	2.5	2.25	2	1.75	1.6	1.55	1.501
$m_{ m sec}$	-2.5	-2	-1.75	-1.5	-1.25	-1.1	-1.05	-1.001

Problem: Given a point P(a, f(a)), we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot Q(x, f(x)).
- Draw the secant line through P and Q. The slope of this secant line is

$$m_{\rm sec} = \frac{f(x) - f(a)}{x - a}$$

Repeat.Continue ...

x	3	2.5	2.25	2	1.75	1.6	1.55	1.501
$m_{ m sec}$	-2.5	-2	-1.75	-1.5	-1.25	-1.1	-1.05	-1.001

Discussion

Example: $f(x) = 5 - (x - 1)^2$ and a = 1.5. As we choose values of x getting closer and closer to a = 1.5, the corresponding secant lines rotate around the point P and become more and more "tangent-like". Therefore, it is not too surprising that the slopes of these secant lines are approaching a value we would want to call "the slope of the line tangent to the graph at P".

There are more calculations for those who want to see more	There are more	calculations	for those	who	want	to	see	more.
--	----------------	--------------	-----------	-----	------	----	-----	-------

<i>x</i> <	< 1.5	x > 1.5			
x	$m_{ m sec}$	x	$m_{ m sec}$		
1	-0.5	2	-1.5		
1.4	-0.9	1.6	-1.1		
1.45	-0.95	1.55	-1.05		
1.49	-0.99	1.51	-1.01		
1.499	-0.999	1.501	-1.001		
1.4999	-0.9999	1.5001	-1.0001		
1.49999	-0.99999	1.50001	-1.00001		

The values of m_{sec} appear to be getting close and closer to -1. In this case, we write:

$$\lim_{x \to 1.5} m_{\rm sec} = -1$$