The AcroTEX Web Site, 2000

A Slide Show Demonstrating the Tangent Line Problem

D. P. Story

The Department of Mathematics and Computer Science The University of Akron, Akeron, OH

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate ...

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x								
$m_{\text {sec }}$								

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x								
$m_{\text {sec }}$								

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and $\operatorname{plot} Q(x, f(x))$.

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3							
$m_{\text {sec }}$								

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.
- Draw the secant line through P and Q. The slope of this secant line is

$$
m_{\mathrm{sec}}=\frac{f(x)-f(a)}{x-a}
$$

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3							
$m_{\text {sec }}$	-2.5							

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.
- Draw the secant line through P and Q. The slope of this secant line is

$$
m_{\mathrm{sec}}=\frac{f(x)-f(a)}{x-a}
$$

- Repeat.

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3							
$m_{\text {sec }}$	-2.5							

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5						
$m_{\text {sec }}$	-2.5							

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.
- Draw the secant line through P and Q. The slope of this secant line is

$$
m_{\mathrm{sec}}=\frac{f(x)-f(a)}{x-a}
$$

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5						
$m_{\text {sec }}$	-2.5	-2						

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.
- Draw the secant line through P and Q. The slope of this secant line is

$$
m_{\mathrm{sec}}=\frac{f(x)-f(a)}{x-a}
$$

- Repeat.

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5						
m_{sec}	-2.5	-2						

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25					
m_{sec}	-2.5	-2						

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.
- Draw the secant line through P and Q. The slope of this secant line is

$$
m_{\mathrm{sec}}=\frac{f(x)-f(a)}{x-a}
$$

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25					
$m_{\text {sec }}$	-2.5	-2	-1.75					

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.
- Draw the secant line through P and Q. The slope of this secant line is

$$
m_{\mathrm{sec}}=\frac{f(x)-f(a)}{x-a}
$$

- Repeat.

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25					
m_{sec}	-2.5	-2	-1.75					

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and $\operatorname{plot} Q(x, f(x))$.

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25	2				
$m_{\text {sec }}$	-2.5	-2	-1.75					

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.
- Draw the secant line through P and Q. The slope of this secant line is

$$
m_{\mathrm{sec}}=\frac{f(x)-f(a)}{x-a}
$$

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25	2				
$m_{\text {sec }}$	-2.5	-2	-1.75	-1.5				

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.
- Draw the secant line through P and Q. The slope of this secant line is

$$
m_{\mathrm{sec}}=\frac{f(x)-f(a)}{x-a}
$$

- Repeat.

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25	2				
$m_{\text {sec }}$	-2.5	-2	-1.75	-1.5				

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and $\operatorname{plot} Q(x, f(x))$.

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25	2	1.75			
$m_{\text {sec }}$	-2.5	-2	-1.75	-1.5				

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.
- Draw the secant line through P and Q. The slope of this secant line is

$$
m_{\mathrm{sec}}=\frac{f(x)-f(a)}{x-a}
$$

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25	2	1.75			
$m_{\text {sec }}$	-2.5	-2	-1.75	-1.5	-1.25			

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.
- Draw the secant line through P and Q. The slope of this secant line is

$$
m_{\mathrm{sec}}=\frac{f(x)-f(a)}{x-a}
$$

- Repeat.

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25	2	1.75			
m_{sec}	-2.5	-2	-1.75	-1.5	-1.25			

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and $\operatorname{plot} Q(x, f(x))$.

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25	2	1.75	1.6		
m_{sec}	-2.5	-2	-1.75	-1.5	-1.25			

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.
- Draw the secant line through P and Q. The slope of this secant line is

$$
m_{\mathrm{sec}}=\frac{f(x)-f(a)}{x-a}
$$

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25	2	1.75	1.6		
m_{sec}	-2.5	-2	-1.75	-1.5	-1.25	-1.1		

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.
- Draw the secant line through P and Q. The slope of this secant line is

$$
m_{\mathrm{sec}}=\frac{f(x)-f(a)}{x-a}
$$

- Repeat.

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25	2	1.75	1.6		
$m_{\text {sec }}$	-2.5	-2	-1.75	-1.5	-1.25	-1.1		

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and $\operatorname{plot} Q(x, f(x))$.

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25	2	1.75	1.6	1.55	
$m_{\text {sec }}$	-2.5	-2	-1.75	-1.5	-1.25	-1.1		

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.
- Draw the secant line through P and Q. The slope of this secant line is

$$
m_{\mathrm{sec}}=\frac{f(x)-f(a)}{x-a}
$$

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25	2	1.75	1.6	1.55	
$m_{\text {sec }}$	-2.5	-2	-1.75	-1.5	-1.25	-1.1	-1.05	

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.
- Draw the secant line through P and Q. The slope of this secant line is

$$
m_{\mathrm{sec}}=\frac{f(x)-f(a)}{x-a}
$$

- Repeat.

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25	2	1.75	1.6	1.55	
$m_{\text {sec }}$	-2.5	-2	-1.75	-1.5	-1.25	-1.1	-1.05	

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and $\operatorname{plot} Q(x, f(x))$.

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25	2	1.75	1.6	1.55	1.501
$m_{\text {sec }}$	-2.5	-2	-1.75	-1.5	-1.25	-1.1	-1.05	

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.
- Draw the secant line through P and Q. The slope of this secant line is

$$
m_{\mathrm{sec}}=\frac{f(x)-f(a)}{x-a}
$$

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25	2	1.75	1.6	1.55	1.501
$m_{\text {sec }}$	-2.5	-2	-1.75	-1.5	-1.25	-1.1	-1.05	-1.001

Tangent Line Problem

Problem: Given a point $P(a, f(a))$, we want to define and calculate the slope of the line tangent the graph at P.

- Choose a point x near a and plot $Q(x, f(x))$.
- Draw the secant line through P and Q. The slope of this secant line is

$$
m_{\mathrm{sec}}=\frac{f(x)-f(a)}{x-a}
$$

- Repeat.
- Continue ...

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$.

x	3	2.5	2.25	2	1.75	1.6	1.55	1.501
$m_{\text {sec }}$	-2.5	-2	-1.75	-1.5	-1.25	-1.1	-1.05	-1.001

Discussion

Example: $f(x)=5-(x-1)^{2}$ and $a=1.5$. As we choose values of x getting closer and closer to $a=1.5$, the corresponding secant lines rotate around the point P and become more and more "tangent-like". Therefore, it is not too surprising that the slopes of these secant lines are approaching a value we would want to call "the slope of the line tangent to the graph at P ".

There are more calculations for those who want to see more.

$x<1.5$	
x	$m_{\text {sec }}$
1	-0.5
1.4	-0.9
1.45	-0.95
1.49	-0.99
1.499	-0.999
1.4999	-0.9999
1.49999	-0.99999

$x>1.5$	
x	$m_{\text {sec }}$
2	-1.5
1.6	-1.1
1.55	-1.05
1.51	-1.01
1.501	-1.001
1.5001	-1.0001
1.50001	-1.00001

The values of $m_{\text {sec }}$ appear to be getting close and closer to
-1 . In this case, we write:

$$
\lim _{x \rightarrow 1.5} m_{\mathrm{sec}}=-1
$$

