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Mathematics of Motion III

The Motion of Planets

History of science

Copernicus . . . The planets revolve around the sun.

Galileo . . . Observations by telescope prove that the Coper-
nican theory is correct.

Kepler . . . Three laws of orbits:
1. The orbits are ellipses with the sun at one focus.
2. The radial vector sweeps out equal areas in equal
times.
3. T 2 ∝ a3.

Newton . . . There are mathematical theories that explain
why the planets move as they do.
(laws of motion, universal gravity, calculus)

Table of variables

R radius for a circular orbit
a semimajor axis of an ellipse
T period of revolution
m mass of a planet or satellite
M mass of the sun
G Newton’s gravitational constant

The period of revolution

This calculation is for the case of a circular orbit:

• Newton’s second law says F = ma.

• The centripetal acceleration in a = v2/R where R is the
radius of the orbit and v is the speed (=2πR/T ).

• The gravitational force is F = GMm/R2.

• Combine these equations =⇒

m(2πR/T )2

R
=
GMm

R2
;

and solve for the period of revolution T ,

T =

√

4π2R3

GM
.

For the case of an elliptical orbit,

T =

√

4π2a3

GM

where a is the semimajor axis.

Ellipse geometry

An ellipse may be specified by two fixed parameters,

a = semimajor axis,

ε = eccentricity.

The large diameter is 2a.

The distance between the foci is 2aε.

Note that ε is dimensionless, and must be between 0 and 1.
An ellipse with ε = 0 is a circle.
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Units

1 AU = 1astronomical unit =mean distance from sun to
Earth= 1.496× 1011 m.

1 y= 1year = period of revolution of Earth= 3.15× 107 s.
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Exercises

Exercise 1

The Earth’s orbit is nearly circular, with radius R⊕ = 1.496×
1011 m. From this, and the laboratory measurement of New-
ton’s gravitational constant,

G = 6.67× 10−11m3s−2kg−1,

calculate the mass of the sun.

Exercise 2 – Flight to Mars

To send a satellite from Earth to Mars, a rocket must ac-
celerate the satellite until it is in an elliptical orbit around
the sun. The satellite does not travel to Mars under rocket
power, because there isn’t enough fuel. It just moves in the
Keplerian orbit under the influence of the sun’s gravity.
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The satellite orbit must have perihelion r− = RE ( = radius
of Earth’s orbit) and aphelion r+ = RM ( = radius of Mars’s
orbit) as shown in the figure. The planetary orbit radii are

RE = 1.496× 1011 m,

RM = 2.280× 1011 m.

(a) What is the semimajor axis of the satellite’s orbit?

(b) Calculate the time for the satellite’s journey. Express the
result in months and days, counting one month as 30 days.

Exercise 3 – Parametric equations for a planetary or-

bit

The sun is at the origin and the plane of the orbit has coor-
dinates x and y. We can write parametric equations for the
time t, and coordinates x and y, in terms of an independent
variable ψ:

t =
T

2π
(ψ − ε sinψ) (1)

x = a (cosψ − ε) (2)

y = a
√

1− ε2 sinψ (3)

The fixed parameters T , a, and ε are

T = period of revolution

a = semimajor axis

ε = eccentricity

(a) The orbit parameters of Halley’s comet are

a = 17.9 AU and ε = 0.97.

Use Mathematica to make a parametric plot of the orbit of
Halley’s comet. (You only need the parametric equations for
x and y, letting the variable ψ go from 0 to 2π for one revo-
lution.)

(b) Calculate the perihelion distance. Express the result in
AU.

(c) Calculate the aphelion distance. Express the result in AU.
How does this compare to the radius of the orbit of Saturn,
or Neptune?

(d) Calculate the period of revolution. Express the result in
years.

Exercise 4

For Halley’s comet, make a plot of radial distance r as a
function of time t. (Note: r =

√

x2 + y2.)
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Exercise 5 – Parametric surfaces

A parametric curve is a curve on a plane. The curve is spec-
ified by giving coordinates x and y as functions of an inde-
pendent parameter t.

A parametric surface is a surface in 3 dimensions. The surface
is specified by giving coordinates x, y, and z as functions of
2 independent parameters u and v. That is, the parametric
equations for a surface have the form

x = f(u, v) , y = g(u, v) , z = h(u, v). (4)

As u and v vary over their domains, the points (x, y, z) cover
the surface.

The Mathematica command for plotting a parametric sur-
face is ParametricPlot3D. To make a graph of the surface
specified by (4), execute the command

ParametricPlot3D[{f[u,v],g[u,v],h[u,v]},

{u,u1,u2},{v,v1,v2}]

In this command, (u1, u2) is the domain of u and (v1, v2) is the
domain of v. Before giving this command you must define in
Mathematica the functions f[u,v], g[u,v], h[u,v]. For
example, for exercise (a) below you would define

f[u_,v_]:=Sin[u]Cos[v]

et cetera

Make plots of the following parametric surfaces. Hand in
either the Mathematica plots, or hand drawn sketches of the
surfaces. Also, in each case state in words what surface it is.

(a) For 0 ≤ u ≤ π and 0 ≤ v ≤ 2π,

f(u, v) = sinu cos v

g(u, v) = sinu sin v

h(u, v) = cosu

(b) For 0 ≤ u ≤ 2π and −0.3 ≤ v ≤ 0.3,

f(u, v) = cosu+ v cos(u/2) cosu

g(u, v) = sinu+ v cos(u/2) sinu

h(u, v) = v sin(u/2)

(c) For 0 ≤ u ≤ 2π and 0 ≤ v ≤ 2π,

f(u, v) = 0.2(1− v/(2π)) cos(2v)(1 + cosu) + 0.1 cos(2v)

g(u, v) = 0.2(1− v/(2π)) sin(2v)(1 + cosu) + 0.1 sin(2v)

h(u, v) = 0.2(1− v/(2π)) sinu+ v/(2π)

Exercise 6

The Newtonian theory of motion and gravity is very accu-
rate, but not exact. A more precise theory was developed by
Albert Einstein. It is called the theory of general relativity.
In Einstein’s theory the orbit of a planet must be a precessing

ellipse rather than a perfect closed ellipse. Einstein’s theory
agrees with planetary observations.

A mathematical representation of a precessing ellipse may be
given by the parametric equations

xp = x cos(0.02ψ)− y sin(0.02ψ)

yp = x sin(0.02ψ) + y cos(0.02ψ)

where xp and yp are the points on the precessing ellipse, and
x and y are the points on the nonprecessing ellipse (given by
equations (2) and (3)); ψ is the same parameter as in (2) and
(3).

Hand in a plot of the precessing ellipse if the semimajor axis
is a = 1 and the eccentricity is ε = 0.5.
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Homework problem
due Thursday, Nov 15

Look up, e.g., in an encyclopedia or on the Internet, the semi-
major axis (a) and period of revolution (T ) for all nine of the
planets.

(a) Record the data in the table below. For each planet ex-
press the semimajor axis in AU, and the period in y, and
calculate T 2/a3 in y2/AU3.

planet a [AU] T [y] T 2/a3 [y2/AU3]

Mercury

Venus

Earth

Mars

Jupiter

Saturn

Uranus

Neptune

Pluto

(b) What do you notice about the values in the fourth col-
umn?

(c) Explain why the values in the fourth column are constant.
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Answers Nov 8, 2001

Exercise 1

The mass of the sun is . . .

Exercise 2 – Flight to Mars

(a) The semimajor axis of the satellite’s orbit is . . .

(b) The time for the satellite’s journey is . . .

Exercise 3 – Halley’s comet

(a) Hand in a fraph of the orbit.

(b) The perihelion distance is . . .

(c) The aphelion distance is . . .

(d) The period of revolution is . . .

Exercise 4

Hand in a graph of radial distance versus time.

Exercise 5 – Parametric Surfaces

Hand in plots of the surfaces; also, answer in words:

(a) What is the surface?

(b) What is the surface?

(c) What is the surface?

Exercise 6

Hand in a plot of the precessing ellipse.


