Homework \#2

Write up carefully your solutions to these problems on a seperate piece of paper.. They will be due on Friday, August 31.

1. a. Sketch the graph ofthe height of a basketball from the time it leaves the shooter's hands from where he is standing just beyond the three-point line, until it swishes through the net. Your y-axis is the height of the ball and the x -axis will be distance from the rim.
b. Which common function could be used to model this situtation?
c. Sketch a graph of the velocity of the ball.
2. Sketch a graph of the polynomials p, given below. Show the endpoint (large x) behavior and explain how the powers change the behavior at the roots.
a. $\mathrm{p}(\mathrm{x})=x^{3}-8 x^{2}+21 x-18=(x-3)^{2}(x+2)$
b. $\mathrm{p}(\mathrm{x})=(x-3)^{3}(x+2)^{2}(\mathrm{x}+6)$
3. A line intecepts the parabola $y=2 x^{2}+1$ at two points- when $x=-1$ and $x=2$. Find the equation of this line.
4. The amount of trash (in tons) entering a local landfill as a function of time (in months) can be approximated by a straight line with a slope $7 / 4$. In May the dump received 3,546 tons of trash. How much trash should they anticipate receiving next January? (I'll be more-impressed if you can show me how to do this without finding the equation of the line.)
5. Make up a story that would explain the motion given by the following graph:

6. Write a piecewise equation that would give the graph above. (You will need to approximate. Using a graphing calculator to check your answer is almost a necessity.)
7. a. Fill in the following table to find the (approximate) instantaneous velocity of an object moving with distance from the origin given by $\mathrm{s}(\mathrm{t})=3 t^{2}-4 t+11$ feet when time $\mathrm{t}=5$.

second time	4	4.5	4.99	5.05	5.5	6
average velocity	\square	\square	\square	\square	\square	\square

in the second row.)
b. From the table, what do you think the instantaneous velocity is when $t=5$?
c. Find the exact instantaneous velocity by taking the limit of a difference quotient.

