The Derivative
... a bit of calculus ...
Consider a function $f(x)$ and its graph.

The slope of the graph at a point is

$$
\text { slope }=\lim _{\Delta x \rightarrow 0} \frac{\Delta f}{\Delta x}=f^{\prime}(x)
$$

- Rate of change of f at the point x
- Same as the slope of the tangent line

Some Examples

$$
\begin{array}{lll}
f(x)=C & \Longrightarrow & f^{\prime}(x)=0 \\
f(x)=C x & \Longrightarrow & f^{\prime}(x)=C \\
f(x)=C x^{p} & \Longrightarrow & f^{\prime}(x)=C p x^{p-1} \\
f(x)=f_{1}(x)+f_{2}(x) & \Longrightarrow & f^{\prime}(x)=f_{1}^{\prime}(x)+f_{2}^{\prime}(x) \\
f(x)=\frac{A(x)}{B(x)} & \Longrightarrow & f^{\prime}=\frac{B A^{\prime}-A B^{\prime}}{B^{2}}
\end{array}
$$

