
6 APPLICATIONS OF THE
INTEGRAL

The CAT scan is based on tomography, a
mathematical technique for combining a
large series of X-rays of the body taken at
different angles into a single
cross-sectional image.

T he integral, like the derivative, has a wide
variety of applications.

In the previous chapter, we used the integral to compute
areas under curves and net change. In this chapter, we discuss
some of the other quantities that are represented by integrals,
including volume, average value, work, total mass, population,
and fluid flow.

6.1 Area Between Two Curves
One goal of integration is to compute the area of regions en-
closed by curves. The definite integral does not fully accomplish
this goal because

∫ b
a f(x) dx only gives us the signed area of

the region between the graph of a function f(x) and the x-axis.
Suppose, however, that the region can be expressed as the re-
gion between the graphs of two functions f(x) and g(x) over
[a, b] where f(x) ≥ g(x). Then the actual area of the region (not
the signed area) is equal to the integral of f(x) − g(x):

Area between the graphs =
∫ b

a
f(x) dx −

∫ b

a
g(x) dx

=
∫ b

a
(f(x) − g(x)) dx 1

We can justify this formula in the case that f(x) ≥ g(x) ≥ 0 by referring to Figure
1. we see that the region between the graphs is obtained by removing the region
under y = g(x) from the region under y = f(x).

x

y

a b a b a b
Region between the graphs

x

y

x

y

= −
f (x)

g(x)

f (x)

g(x)

f (x)

g(x)

FIGURE 1 The area between the
graphs is a difference of two areas.

EXAMPLE 1 Calculate the area of the region between the graphs of

f(x) = x2 − 4x + 10 and g(x) = 4x − x2

over [1, 3].

374
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Solution To calculate the area between the graphs, we must first determine which
graph lies on top. Figure 2 shows that f(x) ≥ g(x). We can verify this without1 2 3 4

g(x) = 4x − x2

10
8
6
4
2

x

FIGURE 2 Region between the graphs
of f(x) = x2 − 4x + 10 and
g(x) = 4x − x2 over [1, 3].

appealing to the graph by completing the square:

f(x) − g(x) = (x2 − 4x + 10) − (4x − x2) = 2x2 − 8x + 10 = 2(x − 2)2 + 2 > 0

By Eq. (1), the area between the graphs is
∫ 3

1

(
f(x) − g(x)

)
dx =

∫ 3

1

(
(x2 − 4x + 10) − (4x − x2)

)
dx

=
∫ 3

1
(2x2 − 8x + 10) dx =

(
2
3
x3 − 4x2 + 10x

)∣∣∣∣
3

1

= 12 − 20
3

=
16
3

Before continuing with more examples, let us use Riemann sums to explain
why Eq. (1) remains valid if f(x) ≥ g(x) but f(x) and g(x) are not assumed to
be positive:

∫ b

a

(
f(x) − g(x)

)
dx = lim

‖P‖→0
R(f − g, P, C) = lim

N→∞

N∑

i=1

(
f(ci) − g(ci)

)
∆xi

Recall that P denotes a partition of [a, b]:

Partition P : a = x0 < x1 < x2 < · · · < xN = b

C = {c1, . . . , cN} is a choice of sample points where ci ∈ [xi−1, xi], and
∆xi = xi − xi−1. The ith term in the Riemann sum is equal to the area of
a thin vertical rectangle of height (f(ci) − g(ci)) and width ∆xi (Figure 3):

(
f(ci) − g(ci)

)
∆xi = height × width

Therefore, R(f − g, P, C) is an approximation to the area between the graphs using
thin vertical rectangles. As the norm ‖P‖ (the maximum width of the rectangles)
approaches zero, the Riemann sum converges to the area between the graphs and
we obtain Eq. (1).

ybot = g(x)

ytop = f(x)

c1 c2 ci

x1
x

y

a = x0 xN = bxi-1 xi

Rectangle has
area  ( f(ci) - g(ci) ) xi

FIGURE 3 The ith rectangle has
width ∆xi = xi − xi−1 and height
f(ci) − g(ci).

To help identify the functions, we sometimes denote the upper graph by ytop =
f(x) and the lower graph by ybot = g(x):

Keep in mind that (ytop − ybot) is the
height of a thin vertical slice of the region.

Area between the graphs =
∫ b

a
(ytop − ybot) dx =

∫ b

a

(
f(x) − g(x)

)
dx

2
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EXAMPLE 2 Find the area between the graphs of f(x) = x2 − 5x − 7 and
g(x) = x − 12 over [−2, 5].

Solution To calculate the area, we must first determine which graph lies on top.

Step 1. Sketch the region (especially, find any points of intersection).
We know that y = f(x) is a parabola with y-intercept −7 and y = g(x) is a
line with y-intercept −12. To determine where the graphs intersect, we solve
f(x) = g(x):

f(x) = x2 − 5x − 7

g(x) = x − 12

x

y

1 5−2
−7

−12

FIGURE 4

x2 − 5x − 7 = x − 12 or x2 − 6x + 5 = (x − 1)(x − 5) = 0

Thus, the points of intersection are x = 1, 5 (Figure 4).
Step 2. Set up the integrals and evaluate.

Figure 4 shows that

In Example 2, we found the intersection
points of y = f(x) and y = g(x)

algebraically. For more complicated
functions, it may be necessary to use a
computer algebra system.

f(x) ≥ g(x) on [−2, 1] and g(x) ≥ f(x) on [1, 5]

Therefore, we write the area as a sum of integrals over the two intervals:
∫ 5

−2
(ytop − ybot) dx =

∫ 1

−2

(
f(x) − g(x)

)
dx +

∫ 5

1

(
g(x) − f(x)

)
dx

=
∫ 1

−2

(
(x2 − 5x − 7) − (x − 12)

)
dx +

∫ 5

1

(
(x − 12)− (x2 − 5x − 7)

)
dx

=
∫ 1

−2
(x2 − 6x + 5) dx +

∫ 5

1
(−x2 + 6x − 5) dx

=
(

1
3
x3 − 3x2 + 5x

)∣∣∣∣
1

−2

+
(
−1

3
x3 + 3x2 − 5x

)∣∣∣∣
5

1

=
(

7
3
− (−74)

3

)
+

(
25
3

− (−7)
3

)
=

113
3

EXAMPLE 3 Calculating Area by Dividing the Region Find the area of the

region bounded by the graphs of y =
8
x2

, y = 8x, and y = x.

Solution

Step 1. Sketch the region (especially, find any points of intersection).

The curve y =
8
x2

cuts off a region in the sector between the two lines y = 8x

y = 8x

y = ––

y = x

8
x2

y = 8x

y = x

y = ––

y = x

8
x2

x

y

1 2

8

2

8

2

8

2
x

y

1 2
x

y

A B

1 2

= +
FIGURE 5 Area bounded by y =

8
x2

,

y = 8x, and y = x as a sum of two
areas.



SEC T I O N 6.1 Area Between Two Curves 377

and y = x (Figure 5). To find the intersection of y =
8
x2

and y = 8x, we solve

8
x2

= 8x ⇒ x3 = 1 ⇒ x = 1

To find the intersection of y =
8
x2

and y = x, we solve

8
x2

= x ⇒ x3 = 8 ⇒ x = 2

Step 2. Set up the integrals and evaluate.
Figure 5 shows that ybot = x, but ytop changes at x = 1 from ytop = 8x to

ytop =
8
x2

. Therefore, we break up the regions into two parts, A and B, and
compute their areas separately:

Area of A =
∫ 1

0
(ytop − ybot) dx =

∫ 1

0
(8x − x) dx =

∫ 1

0
7xdx =

7
2

x2

∣∣∣∣
1

0

=
7
2

Area of B =
∫ 2

1
(ytop − ybot) dx =

∫ 2

1

(
8
x2

− x

)
dx =

(
− 8

x
− 1

2
x2

) ∣∣∣∣
2

1

=
5
2

The total area bounded by the curves is the sum 7
2 + 5

2 = 6.

Integration Along the y-Axis
Suppose we are given x as a function of y, say, x = g(y). What is the meaning

of the integral
∫ d

c
g(y) dy? This integral may be interpreted as signed area, where

regions to the right of the y-axis have positive area and regions to the left have
negative area:

∫ d

c
g(y) dy = signed area between graph and y-axis for c ≤ y ≤ d

Figure 6(A) shows the graph of g(y) = y2 − 1. The region to the left of the y-axis
has negative signed area. The integral is equal to the signed area:

∫ 2

−2
(y2 − 1) dy

︸ ︷︷ ︸
Area to the right of y-axis minus

area to the left of y-axis

=
(

1
3
y3 − y

) ∣∣∣∣
2

−2

=
4
3

More generally, if g2(y) ≥ g1(y) as in Figure 6(B), then the graph of x = g2(y)
lies to the right of the graph of x = g1(y). As a reminder, we write xright = g2(y)
and xleft = g1(y). The area between the two graphs for c ≤ y ≤ d is equal to

Area between the graphs =
∫ d

c

(
g2(y) − g1(y)

)
dy =

∫ d

c
(xright − xleft) dy 3

In this case, the Riemann sums approximate the area by thin horizontal rectangles
of width xright − xleft and height ∆y.
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EXAMPLE 4 Calculate the area between the graphs of g1(y) = y3 − 4y and
g2(y) = y3 + y2 + 8 for −2 ≤ y ≤ 2.

2

−2

y

x

xright = y3+ y2 + 8
xleft = y3 − 4y

FIGURE 7 Region between
g1(x) = y3 − 4y and
g2(x) = y3 + y2 + 8 for −2 ≤ y ≤ 2.

Solution We confirm that g2(y) ≥ g1(y) as shown in Figure 7:

It would be more difficult to calculate the
area of the region in Figure 7 as an integral
with respect to x because the curves are
not graphs of functions of x.

g2(y) − g1(y) = (y3 + y2 + 8) − (y3 − 4y) = y2 + 4y + 8 = (y + 2)2 + 4 > 0

Therefore, xright = g2(y) and xleft = g1(y), and the area is

∫ 2

−2
(xright − xleft) dy =

∫ 2

−2
(y2 + 4y + 8) dy =

(
1
3
y3 + 2y2 + 8y

)∣∣∣∣
2

−2

=
80
3

− −32
3

=
112
3

6.1 SUMMARY
• If f(x) ≥ g(x) on [a, b], then the area between the graphs of f and g over [a, b]
is

Area between graphs =
∫ b

a

(
f(x) − g(x)

)
dx =

∫ b

a

(
ytop − ybot

)
dx

• To calculate the area between two graphs y = f(x) and y = g(x), sketch the
region to find ytop. If necessary, find points of intersection by solving f(x) = g(x).

• The integral along the y-axis,
∫ d

c
g(y) dy, is equal to the signed area between

the graph and the y-axis for c ≤ y ≤ d, where area to the right of the y-axis is
positive and area to the left is negative.
• If g2(y) ≥ g1(y), then the graph of x = g2(y) lies to the right of the graph of
x = g1(y) and the area between the graphs for c ≤ y ≤ d is

Area between graphs =
∫ d

c

(
g2(y) − g1(y)

)
dy =

∫ d

c

(
xright − xleft

)
dy

2

1

−2

−1

−
−

+

+

x = y2 − 1

(A)  Region between  x = y2 − 1
        and the y-axis 

(B)  Region between x = g2(y)
       and x = g1(y)

d

c

y

∆y

x

x

x right = g2(y)

x right − x left

x left = g1(y)

y

FIGURE 6
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6.1 EXERCISES

Preliminary Questions
1. What is the area interpretation of

∫ b

a

(
f(x) − g(x)

)
dx if

f(x) ≥ g(x)?

2. Is

∫ b

a

(
f(x) − g(x)

)
dx still equal to the area between the

graphs of f and g if f(x) ≥ 0 but g(x) ≤ 0?

3. Suppose that f(x) ≥ g(x) on [0, 3] and g(x) ≥ f(x) on
[3, 5]. Express the area between the graphs over [0, 5] as a sum
of integrals.

4. Suppose that the graph of x = f(y) lies to the left of the

y-axis. Is

∫ b

a

f(y) dy positive or negative?

Exercises
1. Find the area of the region between y = 3x2 + 12 and

y = 4x + 4 over [−3, 3] (Figure 8).

50

25

y

x

y = 3x2 + 12

y = 4x + 4

3−1−2−3 1 2

FIGURE 8

2. Compute the area of the region in Figure 9(A), which lies
between y = 2 − x2 and y = −2 over [−2, 2].

y

x
2−2 −2

−2 −2

y

x
1

y = 2 − x2 y = 2 − x2

y = x

(A) (B)

y = −2

FIGURE 9

3. Let f(x) = x and g(x) = 2 − x2 [Figure 9(B)].

(a) Find the points of intersection of the graphs.

(b) Find the area enclosed by the graphs of f and g.

4. Let f(x) = 8x − 10 and g(x) = x2 − 4x + 10.

(a) Find the points of intersection of the graphs.

(b) Compute the area of the region below the graph of f and
above the graph of g.

In Exercises 5–7, find the area between y = sin x and y = cosx
over the interval. Sketch the curves if necessary.

5.
[
0,
π
4

]
6.

[π
4

,
π
2

]
7. [0, π]

In Exercises 8–10, let f(x) = 20 + x − x2 and g(x) = x2 − 5x.

8. Find the area between the graphs of f and g over [1, 3].

9. Find the area of the region enclosed by the two graphs.

10. Compute the area of the region between the two graphs
over [4, 8] as a sum of two integrals.

11. Find the area between y = ex and y = e2x over [0, 1].

12. Find the area of the region bounded by y = ex and
y = 12 − ex and the y-axis.

13. Sketch the region bounded by y =
1√

1 − x2
and

y = − 1√
1 − x2

for − 1
2 ≤ x ≤ 1

2 and find its area.

14. Sketch the region bounded by y = sec2 x and y = 2 and
find its area.

In Exercises 15–18, find the area of the shaded region in the
figure.

15. y

x
2

y = 3x2 + 4x − 10

y = x3 − 2x2 + 10
−2

FIGURE 10

16.

x

y = sin x

y = sin 2x

pp
2

y
1

−1

FIGURE 11



380 CH AP TER 6 APPLICATIONS OF THE INTEGRAL

17.

1

−1
x

y

y = x   1 − x2

y = − x 1
2

FIGURE 12

18.

x

y

y = cos x

p
6

3
2 (     ,       ) 

p
3

1
2(     ,     ) 

p
6

p
3

p
2

FIGURE 13

19. Find the area of the region enclosed by the curves y =
x3 − 6x and y = 8 − 3x2.

20. Find the area of the region enclosed by the semicubical
parabola y2 = x3 and the line x = 1.

In Exercises 21–22, find the area between the graphs of x = sin y
and x = 1 − cos y over the given interval (Figure 14).

x = 1 − cos y

x = sin y

x

y

− p
2

p
2

FIGURE 14

21. 0 ≤ y ≤ π
2

22. −π
2
≤ y ≤ π

2

23. Find the area of the region lying to the right of x =
y2 + 4y − 22 and the left of x = 3y + 8.

24. Find the area of the region lying to the right of x = y2 − 5
and the left of x = 3 − y2.

25. Calculate the area enclosed by x = 9− y2 and x = 5 in two
ways: as an integral along the y-axis and as an integral along
the x-axis.

26. Figure 15 shows the graphs of x = y3 − 26y + 10 and
x = 40 − 6y2 − y3. Match the equations with the curve and
compute the area of the shaded region.

x

y

3

−1

−5

FIGURE 15

In Exercises 27–28, find the area of the region using the method
(integration along either the x- or y-axis) that requires you to
evaluate just one integral.

27. Region between y2 = x + 5 and y2 = 3 − x

28. Region between y = x and x + y = 8 over [2, 3]

In Exercises 29–45, sketch the region enclosed by the curves
and compute its area as an integral along the x- or y-axis.

29. y = 4 − x2, y = x2 − 4

30. y = x2 − 6, y = 6 − x3, y-axis

31. x = sin y, x =
2
π

y

32. x + y = 4, x − y = 0, y + 3x = 4

33. y = 3x−3, y = 4 − x, y =
x
3

34. y = 2 −
√

x, y =
√

x, x = 0

35. y = x
√

x − 2, y = −x
√

x − 2, x = 4

36. y = |x|, y = x2 − 6

37. x = |y|, x = 6 − y2

38. x = |y|, x = 1 − |y|

39. x = 12 − y, x = y, x = 2y

40. x = y3 − 18y, y + 2x = 0

41. x = 2y, x + 1 = (y − 1)2

42. x + y = 1, x1/2 + y1/2 = 1

43. y = 6, y = x−2 + x2 (in the region x > 0)

44. y = cos x, y = cos(2x), x = 0, x =
2π
3

45. y = sin x, y = csc2 x, x =
π
4

, x =
3π
4

46. Plot y =
x√

x2 + 1
and y = (x − 1)2 on the same

set of axes. Use a computer algebra system to find the points
of intersection numerically and compute the area between the
curves.
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47. Sketch a region whose area is represented by

∫ √
2/2

−
√

2/2

(√
1 − x2 − |x|

)
dx

and evaluate using geometry.

48. NEW Athletes 1 and 2 run in the same direction
along a straight track with velocities v1(t) and v2(t) (in m/s)
as shown in Figure 16.

(a) Which of the following is a correct interpretation of the
area between the graphs of v1(t) and v2(t) over the time inter-
val [0, 10]? Explain.

i. The distance between athletes 1 and 2 at time t = 10 s.

ii. The difference in the distance traveled by the athletes 1
and 2 over the time interval [0, 10].

(b) Does Figure 16 give us enough information to determine
who is ahead at time t = 10 s?

(c) If the athletes begin at the same time and place, who is
ahead at t = 25 s?

5 10 15 20 25 30

1

2

3

4

5

6

7

v1

v2

m/s

t (s)

FIGURE 16

49. Express the area (not signed) of the shaded region in Fig-
ure 17 as a sum of three integrals involving the functions f and
g.

x

y

g(x)

f(x)

3 5 9

FIGURE 17

50. Find the area enclosed by the curves y = c − x2 and
y = x2 − c as a function of c. Find the value of c for which
this area is equal to 1.

51. Set up (but do not evaluate) an integral that expresses the
area between the circles x2 + y2 = 2 and x2 + (y − 1)2 = 1.

52. Set up (but do not evaluate) an integral that expresses the
area between the graphs of y = (1 + x2)−1 and y = x2.

53. Find a numerical approximation to the area above
y = 1 − (x/π) and below y = sin x (find the points of intersec-
tion numerically).

54. Find a numerical approximation to the area above
y = |x| and below y = cos x.

55. Use a computer algebra system to find a numerical
approximation to the number c (besides zero) in [0, π

2 ], where
the curves y = sin x and y = tan2 x intersect. Then find the
area enclosed by the graphs over [0, c].

56. The back of Jon’s guitar (Figure 18) has a length 19 in. He
measured the widths at 1-in. intervals, beginning and ending
1
2 in. from the ends, obtaining the results

6, 9, 10.25, 10.75, 10.75, 10.25, 9.75, 9.5, 10, 11.25,

12.75, 13.75, 14.25, 14.5, 14.5, 14, 13.25, 11.25, 9

Use the midpoint rule to estimate the area of the back.

10
.7

5

11
.2

5
910
.2

5
96

FIGURE 18 Back of guitar.

Exercises 57 - 58 use the notation and results of Exercises ??-
?? of Section 3.4. For a given country, F (r) is the fraction of
total income that goes to the bottom rth fraction of households.
The graph of y = F (r) is called the Lorenz curve.

57. NEW Let A be the area between y = r and
y = F (r) over the interval [0, 1] (the shaded area in Figure
19). The Gini index is the ratio G = A/B where B is the area
under y = r over [0, 1].

(a) Show that G = 2

∫ 1

0

(r − F (r)) dr

(b) Calculate G if F (r) =

{
1
3 r for 0 ≤ r ≤ 1

2
5
3 r − 2

3 for 1
2 ≤ r ≤ 1

(c) The Gini index is a measure of income distribution, with a
lower value indicating more equal distribution. By Exercise ??
(d) of Section 3.4, all households have the same income if and
only if F (r) = r. Calculate G in this case. What is G if all of
the income goes to one household? Hint: in this extreme case,
F (r) = 0 for 0 ≤ r < 1.

58. NEW Calculate the Gini index of the U.S. in the year
2001, assuming that the graph of F (r) in Figure 19 consists of
straight line segments joined at the data points in the following
table.



382 CH AP TER 6 APPLICATIONS OF THE INTEGRAL

r 0 0.2 0.4 0.6 0.8 1
F (r) 0 0.035 0.123 0.269 0.499 1

0.8

1

0.4 0.6 10.2

0.8

0.4

0.6

0.2

y = F(r)y = r

FIGURE 19 Lorenz curve for U.S. in 2001
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Further Insights and Challenges
59. Find the line y = mx that divides the area under the curve
y = x(1 − x) over [0, 1] into two regions of equal area.

60. Let c be the number such that the area under
y = sin x over [0, π] is divided in half by the line y = cx (Figure
20). Find an equation for c and solve this equation numerically

y = sin x y = cx

x

1

pp
2

y

FIGURE 20

using a computer algebra system.

61. Explain geometrically (without calculation) why
the following holds for any n > 0:

∫ 1

0

xn dx +

∫ 1

0

x1/n dx = 1

62. Let f(x) be a strictly increasing function with inverse g(x).
Explain the equality geometrically:

∫ a

0

f(x) dx +

∫ f(a)

f(0)

g(x) dx = af(a)

6.2 Setting Up Integrals: Volume, Density, Average
Value

In this section, we use the integral to compute quantities such as volume, total
mass, and fluid flow. The common thread in these diverse applications is that we
approximate the relevant quantity by a Riemann sum and then pass to the limit
to obtain an exact value.

Volume
We begin by showing how integration can be used to compute the volume of

The term “solid” or “solid body” refers to a
solid three-dimensional object.

a solid body. Before proceeding, let’s recall that the volume of a right cylinder
(Figure 1) is Ah, where A is the area of the base and h is the height, measured
perpendicular to the base. Here we use the term “cylinder” in a general sense; the
base does not have to be circular.

Now let V be the volume of a solid body that extends from height y = a
to y = b along the y-axis as in Figure 2. The intersection of the solid with the

h

Base has area A

FIGURE 1 The volume of a right
cylinder is Ah.

horizontal plane at height y is called the horizontal cross section at height y.
Let A(y) be its area.

To compute V , we divide the solid into N horizontal slices of thickness ∆y =
b − a

N
. The ith slice extends from yi−1 to yi, where yi = a + i∆y. Let Vi be the

volume of the slice. If N is very large, then ∆y is very small and the slices are
very thin. In this case, the ith slice is nearly a right cylinder of base A(yi−1) and
height ∆y, and therefore Vi ≈ A(yi−1)∆y. Summing up, we obtain

V =
N∑

i=1

Vi ≈
N∑

i=1

A(yi−1)∆y

The sum on the right is a left-endpoint approximation to the integral
∫ b

a
A(y) dy.

If we assume that A(y) is a continuous function, then the approximation improves
in accuracy and converges to the integral as N → ∞. We conclude that the volume
of the solid is equal to the integral of its cross-sectional area.
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Volume of
ith slice ≈ A(y i − 1)∆y

Cross section
at height y i − 1

  has area A(y i − 1) 
x

y

y0 = a

yN = b

y1

y i
y i − 1

∆y

FIGURE 2 Divide the solid into thin
horizontal slices. Each slice is nearly a
right cylinder whose volume can be
approximated as area times height.

Volume as the Integral of Cross-Sectional Area Suppose that a solid body
extends from height y = a to y = b. Let A(y) be the area of the horizontal cross
section at height y. Then

Volume of the solid body =
∫ b

a
A(y) dy 1

EXAMPLE 1 Volume of a Pyramid: Horizontal Cross Sections Calculate
the volume V of a pyramid of height 12 m whose base is a square of side 4 m.

Solution To use Eq. (1), we need a formula for A(y).

(y)

12 − y

12

2
0

y

B

C

A 4

FIGURE 3 A horizontal cross section
of the pyramid is a square.

Step 1. Find a formula for A(y).
We see in Figure 3 that the horizontal cross section at height y is a square. Let
!(y) be the length of its sides. We apply the law of similar triangles to +ABC
and the triangle of height 12 − y whose base of length 1

2!(y) lies on the cross
section:

Base
Height

=
2
12

=
1
2!(y)
12 − y

⇒ 2(12 − y) = 6!(y)

We find that !(y) = 1
3 (12 − y) and therefore A(y) = !(y)2 = 1

9 (12 − y)2.
Step 2. Compute V as the integral of A(y).

V =
∫ 12

0
A(y) dy =

∫ 12

0

1
9
(12 − y)2dy = − 1

27
(12 − y)3

∣∣∣
12

0
= 64 m3

Note that we would obtain this same result using the formula V = 1
3Ah for the

volume of a pyramid of base A and height h, since 1
3Ah = 1

3 (42)(12) = 64.

EXAMPLE 2 The base of a solid is the region between the x-axis and the
inverted parabola y = 4− x2. The vertical cross sections of the solid perpendicular
to the y-axis are semicircles (Figure 4). Compute the volume of the solid.

x
y

y

x
4y

y
4 − y

length   4 − y

y = 4 − x2 or
x = ± 4 − y

cross-section is a semicircle
of radius     4 − y

FIGURE 4 A solid whose base is the
region between y = 4 − x2 and the
x-axis.

Solution First, we find a formula for the cross section at height y. Note that
y = 4 − x2 can be written x = ±

√
4 − y. We see in Figure 4 that the cross section

at height y is a semicircle of radius r =
√

4 − y. The area of the semicircle is
A(y) = 1

2πr2 = π
2 (4 − y), and the volume of the solid is

V =
∫ 4

0
A(y) dy =

π

2

∫ 4

0
(4 − y) dy =

π

2

(
4y − 1

2
y2

) ∣∣∣∣
4

0

= 4π
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The volume of a solid body may be computed using vertical rather than
horizontal cross sections. We then obtain an integral with respect to x rather
than y.

EXAMPLE 3 Volume of a Sphere: Vertical Cross Sections Compute the
volume of a sphere of radius R as an integral of cross-sectional area.

Solution As we see in Figure 5, the vertical cross section of the sphere at x is

x

y

R

r = √R2 − x2

−R Rx
radial lines are
too dark  

FIGURE 5 Vertical cross section is a
circle of radius

√
R2 − x2.

a circle whose radius r satisfies x2 + r2 = R2 or r =
√

R2 − x2. The area of the
cross section is A(x) = πr2 = π(R2 − x2). Therefore, the volume of the sphere is

∫ R

−R
π(R2 − x2) dx = π

(
R2x − x3

3

) ∣∣∣∣
R

−R

= 2
(
πR3 − π

R3

3

)
=

4
3
πR3

Density
Next, we show how an integral may be used to compute the total mass of an
object given its mass density. Consider a rod of length !. The rod’s linear mass
density ρ is defined as the mass per unit length. If the density ρ is constant, then

Total mass = linear mass density × length = ρ · ! 2

For example, if ! = 10 cm and ρ = 9 g/cm, then the total mass is ρ! = 9 · 10 = 90 g.
Integration is needed to compute total mass when the density is not constant.

Consider a rod extending along the x-axis from x = a to x = b whose density ρ(x)
depends on x, as in Figure 6. To compute the total mass M , we decompose the

rod into N small segments of length ∆x =
b − a

N
. Then M =

N∑

i=1

Mi, where Mi is

the mass of the ith segment. Although Eq. (2) cannot be used when ρ(x) is not
constant, we can argue that if ∆x is small, then ρ(x) is nearly constant along the
ith segment. Therefore, if the ith segment extends from xi−1 to xi and if ci is any
sample point in [xi−1, xi], then Mi ≈ ρ(ci)∆x and

Total mass M =
N∑

i=1

Mi ≈
N∑

i=1

ρ(ci)∆x

As N → ∞, the accuracy of the approximation improves. However, the sum onDo you see the similarity in the way we use
thin slices to compute volume and small
pieces to compute total mass? the right is a Riemann sum whose value approaches

∫ b

a
ρ(x) dx. We conclude that

the total mass of a rod is equal to the integral of its linear mass density:

Total mass M =
∫ b

a
ρ(x) dx 3

Density r

x
b = xN

r (x)

x0 = a

rod

Mass ≈ r (ci)∆x x1
xixi−1

xixi−1

ci

FIGURE 6 The total mass of the rod
is equal to the area under the graph of
mass density ρ.
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EXAMPLE 4 Total Mass Find the total mass of a 2-m rod of linear density
ρ(x) = 1 + x(2 − x) kg/m, where x is the distance from one end of the rod.

Solution The total mass is
∫ 2

0
ρ(x) dx =

∫ 2

0

(
1 + x(2 − x)

)
dx =

(
x + x2 − 1

3
x3

) ∣∣∣∣
2

0

=
10
3

kg

In some situations, density is a function of distance to the origin. For example,
in the study of urban populations, it might be assumed that the population density
ρ(r) (in people per square km) depends only on the distance r from the center of
a city. Such a density function is called a radial density function.More general density functions depend on

two variables ρ(x, y). In this case, total
mass or population is computed using
double integration, a topic in multivariable
calculus.

We now derive a formula for the total population P within a radius R of the
city center, assuming that the population density ρ(r) is a radial density function.
To compute P , it makes sense to divide the circle of radius R into N thin rings
of equal width ∆r = R/N as in Figure 7.

r1 r2 ri R

FIGURE 7 Dividing the circle of
radius R into N thin rings of

thickness ∆r =
R
N

.

Let Pi be the population within the ith ring, so that P =
N∑

i=1

Pi. If the outer

radius of the ith ring is ri, then circumference is 2πri, and if ∆r is small, the
area of this ring is approximately 2πri∆r (outer circumference times thickness).
Furthermore, the population density within the thin ring is nearly constant with
value ρ(ri). With these approximations,

Pi ≈ 2πri∆r︸ ︷︷ ︸
Area of ring

× ρ(ri)︸ ︷︷ ︸
Population

density

= 2πriρ(ri)∆r

P =
N∑

i=1

Pi ≈ 2π
N∑

i=1

riρ(ri)∆r

This last sum is a right-endpoint approximation to the integral 2π
∫ R

0
rρ(r) dr.

As N tends to ∞, the approximation improves in accuracy and the sum converges
to the integral. We conclude that for a population with a radial density function
ρ(r),Remember that for a radial density

function, the total population is obtained by
integrating 2πrρ(r) rather than ρ(r).

Population P within a radius R = 2π
∫ R

0
rρ(r) dr 4
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EXAMPLE 5 Computing Total Population from Population Density The
density function for the population in a certain city is ρ(r) = 15(1 + r2)−1/2,
where r is the distance from the center in kilometers and ρ has units of thousands
per square kilometer. How many people live within a 30-km radius of the city
center?

Solution The population (in thousands) within a 30-km radius is

2π
∫ 30

0
r
(
15(1 + r2)−1/2

)
dr = 2π(15)

∫ 30

0

r

(1 + r2)1/2
dr

To evaluate the integral, use the substitution u = 1 + r2, du = 2r dr. The limits
of integration become u(0) = 1 and u(30) = 901, and we obtain

30π
∫ 901

1
u−1/2 (

1
2
)du = 15π u1/2

∣∣∣
901

1
≈ 1,367 thousand

In other words, the population is nearly 1.4 million people.

Flow Rate
When liquid flows through a tube, the flow rate Q is the volume per unit time of
fluid passing through the tube. The flow rate depends on the velocity of the fluid
particles. If all particles of the liquid travel with the same velocity v (say, in units
of centimeters per minute), then the flow rate through a tube of radius R is

Flow rate Q︸ ︷︷ ︸
Volume per unit time

= cross-sectional area× velocity = πR2v cm3/min

How do we obtain this formula? Fix an observation point P in the tube and ask
the following question: Which liquid particles flow past P in a 1-min interval? The
particles passing P during this minute are located at most v centimeters to the
left of P since each particle travels v centimeters per minute (assuming the liquid
flows from left to right). Therefore, the column of liquid flowing past P in a 1-min
interval is a cylinder of radius R and length v, which has volume πR2v (Figure
8).

v cm

R

P

FIGURE 8 The column of fluid
flowing past P in one unit of time is a
cylinder of volume πR2v.

In reality, the particles of liquid do not all travel at the same velocity because
of friction. However, for a slowly moving liquid, the flow is laminar, by which we
mean that the velocity v(r) depends only on the distance r from the center of the
tube. The particles traveling along the center of the tube travel most quickly and
the velocity tapers off to zero near the walls of the tube (Figure 9).

R

P
rFIGURE 9 Laminar flow: Velocity of

liquid increases toward the center of
the tube.
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If the flow is laminar, we can express the flow rate Q as an integral. The
computation is similar to that of population with a radial density function. We
divide the tube into N thin concentric cylindrical shells of width ∆r = R/N
(Figure 10). The cross section of the cylindrical shell is a circular band. If ri is the

ri

v(ri)

FIGURE 10 In a laminar flow, the
fluid particles in a thin cylindrical
shell all travel at nearly the same
velocity.

outer radius of the ith shell, then the area of this cross section is approximately
2πri∆r. Furthermore, the fluid velocity within a shell is nearly constant with value
v(ri), so we can approximate flow rate Qi through the ith cylindrical shell by

Qi ≈ cross-sectional area× velocity ≈ 2πri∆rv(ri)

We obtain

Q ≈
N∑

i=1

Qi = 2π
N∑

i=1

ri v(ri)∆r

The sum on the right is a right-endpoint approximation to the integral 2π
∫ R

0
rv(r) dr.

Once again, we let N tend to ∞ to obtain the formula

Flow rate Q = 2π
∫ R

0
rv(r) dr 5

EXAMPLE 6 Poiseuille’s Law of Laminar Flow According to Poiseuille’s
Law, the velocity of blood flowing in a blood vessel of radius R cm is v(r) = k(R2 − r2),The French physician Jean Poiseuille

(1799–1869) discovered the law of laminar
flow that cardiologists use to study blood
flow in humans. Poiseuille’s Law highlights
the danger of cholesterol buildup in blood
vessels: The flow rate through a blood
vessel of radius R is proportional to R4, so
if R is reduced by one-half, the flow is
reduced by a factor of 16.

where r is the distance from the center of the vessel (in centimeters) and k is a con-
stant. Calculate the flow rate Q as function of R, assuming that k = 0.5 (cm-s)−1.

Solution By Eq. (5),

Q = 2π
∫ R

0
(0.5)r(R2 − r2) dr = π

(
R2 r2

2
− r4

4

) ∣∣∣∣
R

0

=
π

4
R4 cm3/s

This shows that the flow rate is proportional to R4 (this is true for any value of
k).

Average Value
As a final example, we discuss the average value of a function. Recall that the
average of N numbers a1, a2, . . . , aN is the sum divided by N :

a1 + a2 + · · · + aN

N
=

1
N

N∑

j=1

aj

For example, the average of 18, 25, 22, and 31, is 1
4 (18 + 25 + 22 + 31) = 24.

We cannot define the average value of a function f(x) on an interval [a, b] as
a sum because there are infinitely many values of x to consider. But notice that
the right-endpoint approximation RN may be interpreted in terms of an average
value (Figure 11):

y

x

f(x1)
f(x2)

f(xN)

.  .  .x1 x2 b = xNa = x0

FIGURE 11
1

b − a
RN is equal to the

average of the values of f(x) at the
points x1, x2, . . . , xN .

RN =
b − a

N

(
f(x1) + f(x2) + · · · + f(xN )

)

where xi = a + i

(
b − a

N

)
. Dividing by (b − a), we obtain the average of the



SECT I O N 6.2 Setting Up Integrals: Volume, Density, Average Value 389

equally spaced function values f(xi):

1
b − a

RN =
f(x1) + f(x2) + · · · + f(xN )

N︸ ︷︷ ︸
Average of the function values

If N is large, it is reasonable to think of this quantity as an approximation to the
average of f(x) on [a, b]. Therefore, we define the average value itself as the limit:

Average value = lim
N→∞

1
b − a

RN (f) =
1

b − a

∫ b

a
f(x) dx

The average value is also called the mean value.

DEFINITION Average Value The average value of an integrable function
f(x) on [a, b] is the quantity

Average value =
1

b − a

∫ b

a
f(x) dx 6

EXAMPLE 7 Find the average value of f(x) = sinx on (a) [0, π] and
(b) [0, 2π].

Solution

(a) The average value of sinx on [0, π] is

1
π

∫ π

0
sin xdx = − 1

π
cosx

∣∣∣∣
π

0

=
1
π

(
−(−1) − (−1)

)
=

2
π

≈ 0.637

This answer is reasonable because sinx varies from 0 to 1 on the interval [0, π]
and the average 0.637 lies somewhere between the two extremes (Figure 12).

x

y Average value of
sin x  on  [0, p]y = sin x

2
p

1

p

M = 

FIGURE 12 The area under the graph
is equal to the area of the rectangle of
height M , where M is the average
value.

(b) The average value over [0, 2π] is

1
2π

∫ 2π

0
sin xdx = − 1

2π
cosx

∣∣∣∣
2π

0

= − 1
2π

(
1 − (1)

)
= 0

This answer is also reasonable: The positive and negative values of sinx on [0, 2π]
cancel each other out, yielding an average of zero.

GRAPHICAL INSIGHT The average value M of a function f(x) on [a, b] is the
average height of its graph over [a, b] (Figure 12). Furthermore, the (signed) area

of the rectangle of height M over [a, b], M(b − a), is equal to
∫ b

a
f(x) dx.

EXAMPLE 8 Vertical Jump of a Bushbaby The bushbaby (Galago Sene-
galensis) is a small primate with remarkable jumping ability. Find the average
speed during a jump if the initial vertical velocity is v0 = 600 cm/s. Use Galileo’s
formula for the height h(t) = v0t − 490t2 (in centimeters).
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Solution First, determine the time interval of the jump. Since v0 = 600, the
bushbaby’s height at time t is h(t) = 600t − 490t2 = t(600 − 490t). We have
h(0) = h(600/490) = 0, so the jump begins at t = 0 s and ends at t = 600/490 ≈
1.225 s.

The bushbaby’s speed is |h′(t)| = |600− 980t|. We calculate the average speed
as a sum of two integrals since h′(t) is positive on [0, 0.6125] and negative on
[0.6125, 1.225] (Figure 14):

0.5 1 1.225

200

400

600

- 200

- 400

- 600

speed (cm/s)

t (s)

velocity

speed

FIGURE 14 Graph of speed
|h′(t)| = |600 − 980t|.

1
1.225− 0

∫ 1.225

0
|600 − 980t| dt =

1
0.225

(∫ 0.6125

0
(600 − 980t) dt +

∫ 1.225

0.6125
(980t − 600) dt

)

=
600t− 490t2

0.225
∣∣0.6125

0
+

490t2 − 600t

0.225
∣∣1.225

0.6125

≈ 150 + 150 = 300 cm/s

There is an important difference between the average of a list of numbers and
the average value of a continuous function. If the average score on an exam is 84,
then 84 lies between the highest and lowest scores, but it may happen that no
student received a score of 84. By contrast, our next result, called the Mean Value
Theorem (MVT) for Integrals, asserts that a continuous function always takes on
its average value at some point in the interval (Figure 15).

THEOREM 1 Mean Value Theorem for Integrals If f(x) is continuous on
[a, b], then there exists a value c ∈ [a, b] such that

f(c) =
1

b − a

∫ b

a
f(x) dx

x
ba

1
M

Points where f(x) takes on
its average value

y

FIGURE 15 The function f(x) takes
on its average value M at the points
where the upper edge of the rectangle
intersects the graph.

Proof Because f(x) is continuous and [a, b] is closed, there exist points cmin and
cmax in [a, b] such that f(cmin) and f(cmax) are the minimum and maximum values
of f(x) on [a, b]. Thus, f(cmin) ≤ f(x) ≤ f(cmax) for all x ∈ [a, b] and therefore,

∫ b

a
f(cmin) dx ≤

∫ b

a
f(x) dx ≤

∫ b

a
f(cmax) dx

f(cmin)(b − a) ≤
∫ b

a
f(x) dx ≤ f(cmax)(b − a)

Now divide by (b − a):

Notice how the proof of Theorem 1 uses
important parts of the theory we have
developed so far: the existence of extreme
values on a closed interval, the IVT, and
the basic property that if f(x) ≤ g(x), then

∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx

f(cmin) ≤ 1
b − a

∫ b

a
f(x) dx

︸ ︷︷ ︸
Average value M

≤ f(cmax) 7

The expression in the middle is the average value M of f(x) on [a, b]. We see that
M lies between the min and max of f(x) on [a, b]. Because f(x) is continuous, the
Intermediate Value Theorem (IVT) guarantees that f(c) = M for some c ∈ [a, b]
as claimed.
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6.2 SUMMARY
• The volume V of a solid body is equal to the integral of the area of the horizontal
(or vertical) cross sections A(y):

V =
∫ b

a
A(y) dy

• Linear mass density ρ(x) is defined as mass per unit length. If a rod (or other
object) with density ρ extends from x = a to x = b, then its total mass is

M =
∫ b

a
ρ(x) dx.

• If the density function ρ(r) depends only on the distance r from the origin
(radial density function), then the total amount (of population, mass, etc.) within

a radius R of the center is equal to 2π
∫ R

0
rρ(r) dr.

• The volume of fluid passing through a tube of radius R per unit time is called
the flow rate Q. The flow is laminar if the velocity v(r) of a fluid particle depends
only on its distance r from the center of the tube. For a laminar flow, Q =

2π
∫ R

0
rv(r) dr.

• The average (or mean) value on [a, b]: M =
1

b − a

∫ b

a
f(x) dx.

• The MVT for Integrals: If f(x) is continuous on [a, b] with average value M ,
then f(c) = M for some c ∈ [a, b].

6.2 EXERCISES

Preliminary Questions
1. What is the average value of f(x) on [1, 4] if the area be-

tween the graph of f(x) and the x-axis is equal to 9?

2. Find the volume of a solid extending from y = 2 to y = 5
if the cross section at y has area A(y) = 5 for all y.

3. Describe the horizontal cross sections of an ice cream cone
and the vertical cross sections of a football (when it is held
horizontally).

4. What is the formula for the total population within a circle
of radius R around a city center if the population has a radial
function?

5. What is the definition of flow rate?

6. Which assumption about fluid velocity did we use to com-
pute the flow rate as an integral?

Exercises
1. Let V be the volume of a pyramid of height 20 whose base

is a square of side 8.

(a) Use similar triangles as in Example 1 to find the area of
the horizontal cross section at a height y.

(b) Calculate V by integrating the cross-sectional area.

2. Let V be the volume of a right circular cone of height 10
whose base is a circle of radius 4 (Figure 16).

10

(A) (B)

0

y

4
0

y

h

r

FIGURE 16 Right circular cones.
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(a) Use similar triangles to find the area of a horizontal cross
section at a height y.

(b) Calculate V by integrating the cross-sectional area.

3. Use the method of Exercise 2 to find the formula for the
volume of a right circular cone of height h whose base is a circle
of radius r (Figure 16).

4. Calculate the volume of the ramp in Figure 17 in three
ways by integrating the area of the cross sections:

(a) Perpendicular to the x-axis (rectangles)

(b) Perpendicular to the y-axis (triangles)

(c) Perpendicular to the z-axis (rectangles)

2

6

y

x

z

4

FIGURE 17 Ramp of length 6, width 4, and height 2.

5. Find the volume of liquid needed to fill a sphere of radius
R to height h (Figure 18).

R

y

h

FIGURE 18 Sphere filled with liquid to height h.

6. Find the volume of the wedge in Figure 19(A) by integrat-
ing the area of vertical cross sections.

68

(A) (B)

4

ba

c

xx

FIGURE 19

7. Derive a formula for the volume of the wedge in Figure
19(B) in terms of the constants a, b, and c.

8. Let B be the solid whose base is the unit circle x2 + y2 = 1
and whose vertical cross sections perpendicular to the x-axis are
equilateral triangles. Show that the vertical cross sections have
area A(x) =

√
3(1 − x2) and compute the volume of B.

In Exercises 9–14, find the volume of the solid with given base
and cross sections.

9. The base is the unit circle x2 + y2 = 1 and the cross sec-
tions perpendicular to the x-axis are triangles whose height and
base are equal.

10. The base is the triangle enclosed by x + y = 1, the x-axis,
and the y-axis. The cross sections perpendicular to the y-axis
are semicircles.

11. The base is the semicircle y =
√

9 − x2, where −3 ≤ x ≤ 3.
The cross sections perpendicular to the x-axis are squares.

12. The base is a square, one of whose sides is the interval [0, #]
along the x-axis. The cross sections perpendicular to the x-axis
are rectangles of height f(x) = x2.

13. The base is the region enclosed by y = x2 and y = 3. The
cross sections perpendicular to the y-axis are squares.

14. The base is the region enclosed by y = x2 and y = 3.
The cross sections perpendicular to the y-axis are rectangles of
height y3.

15. Find the volume of the solid whose base is the region
|x| + |y| ≤ 1 and whose vertical cross sections perpendicular
to the y-axis are semicircles (with diameter along the base).

16. Show that the volume of a pyramid of height h whose base

is an equilateral triangle of side s is equal to

√
3

12
hs2.

17. Find the volume V of a regular tetrahedron whose face is
an equilateral triangle of side s (Figure 20).

s

s

FIGURE 20 Regular tetrahedron.

18. The area of an ellipse is πab, where a and b are the lengths
of the semimajor and semiminor axes (Figure 21). Compute
the volume of a cone of height 12 whose base is an ellipse with
semimajor axis a = 6 and semiminor axis b = 4.
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12

64
a

b

FIGURE 21

19. A frustum of a pyramid is a pyramid with its top cut off
[Figure 22(A)]. Let V be the volume of a frustum of height h
whose base is a square of side a and top is a square of side b
with a > b ≥ 0.

(a) Show that if the frustum were continued to a full pyramid,

it would have height
ha

a − b
[Figure 22(B)].

(b) Show that the cross section at height x is a square of side
(1/h)(a(h − x) + bx).

(c) Show that V = 1
3h(a2 + ab + b2). A papyrus dating to the

year 1850 bce indicates that Egyptian mathematicians had dis-
covered this formula almost 4,000 years ago.

(B)(A)

h

a

b

FIGURE 22

20. A plane inclined at an angle of 45◦ passes through a di-
ameter of the base of a cylinder of radius r. Find the volume
of the region within the cylinder and below the plane (Figure
23).

FIGURE 23

21. Figure 24 shows the solid S obtained by intersecting two
cylinders of radius r whose axes are perpendicular.

(a) The horizontal cross section of each cylinder at distance
y from the central axis is a rectangular strip. Find the strip’s
width.

(b) Find the area of the horizontal cross section of S at dis-
tance y.

(c) Find the volume of S as a function of r.

S
y

FIGURE 24 Intersection of two cylinders intersecting at right
angles.

22. Let S be the solid obtained by intersecting two cylinders
of radius r whose axes intersect at an angle θ. Find the volume
of S as a function of r and θ.

23. Calculate the volume of a cylinder inclined at an angle
θ = 30◦ whose height is 10 and whose base is a circle of radius
4 (Figure 25).

30°

4

10

FIGURE 25 Cylinder inclined at an angle θ = 30◦.

24. Find the total mass of a 1-m rod whose linear density func-
tion is ρ(x) = 10(x + 1)−2 kg/m for 0 ≤ x ≤ 1.

25. Find the total mass of a 2-m rod whose linear density func-
tion is ρ(x) = 1 + 0.5 sin(πx) kg/m for 0 ≤ x ≤ 2.

26. A mineral deposit along a strip of length 6 cm has density
s(x) = 0.01x(6 − x) g/cm for 0 ≤ x ≤ 6. Calculate the total
mass of the deposit.

27. Calculate the population within a 10-mile radius of the city
center if the radial population density is ρ(r) = 4(1 + r2)1/3 (in
thousands per square mile).
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28. Odzala National Park in the Congo has a high density of
gorillas. Suppose that the radial population density is ρ(r) =
52(1 + r2)−2 gorillas per square kilometer, where r is the dis-
tance from a large grassy clearing with a source of food and
water. Calculate the number of gorillas within a 5-km radius of
the clearing.

29. Table 1 lists the population density (in people per squared
kilometer) as a function of distance r (in kilometers) from the
center of a rural town. Estimate the total population within a
2-km radius of the center by taking the average of the left- and
right-endpoint approximations.

TABLE 1 Population Density

r ρ(r) r ρ(r)

0.0 125.0 1.2 37.6

0.2 102.3 1.4 30.8

0.4 83.8 1.6 25.2

0.6 68.6 1.8 20.7

0.8 56.2 2.0 16.9

1.0 46.0

30. Find the total mass of a circular plate of radius 20 cm
whose mass density is the radial function ρ(r) = 0.03 +
0.01 cos(πr2) g/cm2.

31. The density of deer in a forest is the radial function
ρ(r) = 150(r2 + 2)−2 deer per km2, where r is the distance
(in kilometers) to a small meadow. Calculate the number of
deer in the region 2 ≤ r ≤ 5 km.

32. Show that a circular plate of radius 2 cm with radial mass

density ρ(r) =
4
r

g/cm has finite total mass, even though the

density becomes infinite at the origin.

33. Find the flow rate through a tube of radius 4 cm, assuming
that the velocity of fluid particles at a distance r cm from the
center is v(r) = 16 − r2 cm/s.

34. Let v(r) be the velocity of blood in an arterial capillary of
radius R = 4 × 10−5 m. Use Poiseuille’s Law (Example 6) with
k = 106 (m-s)−1 to determine the velocity at the center of the
capillary and the flow rate (use correct units).

35. A solid rod of radius 1 cm is placed in a pipe of radius 3 cm
so that their axes are aligned. Water flows through the pipe and
around the rod. Find the flow rate if the velocity of the water
is given by the radial function v(r) = 0.5(r − 1)(3 − r) cm/s.

36. MODIFIED The areas of cross sections to Lake Nogebow
at 5 meter intervals are given in the table below. Figure 26
shows a contour map of the lake. Estimate the volume V of

0
5

10
20

15

FIGURE 26 Depth contour map of Lake Nogebow.

the lake by taking the average of the right- and left-endpoint
approximations to the integral of cross-sectional area.

Depth (m) 0 5 10 15 20

Area (million m2) 2.1 1.5 1.1 0.835 0.217

In Exercises 37–46, calculate the average over the given inter-
val.

37. f(x) = x3, [0, 1] 38. f(x) = x3, [−1, 1]

39. f(x) = cos x, [0, π
2 ] 40. f(x) = sec2 x, [0, π

4 ]

41. f(s) = s−2, [2, 5]

42. f(x) =
sin(π/x)

x2
, [1, 2]

43. f(x) = 2x3 − 3x2, [−1, 3] 44. f(x) = xn, [0, 1]

45. f(x) =
1

x2 + 1
, [−1, 1] 46. f(x) = e−nx, [−1, 1]

47. Let M be the average value of f(x) = x3 on [0, A], where
A > 0. Which theorem guarantees that f(c) = M has a solution
c in [0, A]? Find c.

48. Let f(x) = 2 sin x − x. Use a computer algebra
system to plot f(x) and estimate:

(a) The positive root α of f(x).

(b) The average value M of f(x) on [0, α].

(c) A value c ∈ [0, α] such that f(c) = M .

49. Which of f(x) = x sin2 x and g(x) = x2 sin2 x has a larger
average value over [0, 1]? Over [1, 2]?

50. Show that the average value of f(x) =
sin x

x
over [π

2 , π] is

less than 0.41. Sketch the graph if necessary.

51. Sketch the graph of a function f(x) such that
f(x) ≥ 0 on [0, 1] and f(x) ≤ 0 on [1, 2], whose average on
[0, 2] is negative.

52. Find the average of f(x) = ax + b over the interval
[−M, M ], where a, b, and M are arbitrary constants.

53. The temperature T (t) at time t (in hours) in an art mu-

seum varies according to T (t) = 70 + 5 cos
( π

12
t
)
. Find the

average over the time periods [0, 24] and [2, 6].
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54. A ball is thrown in the air vertically from ground level with
initial velocity 64 ft/s. Find the average height of the ball over
the time interval extending from the time of the ball’s release
to its return to ground level. Recall that the height at time t is
h(t) = 64t − 16t2.

55. What is the average area of the circles whose radii vary
from 0 to 1?

56. An object with zero initial velocity accelerates at a con-
stant rate of 10 m/s2. Find its average velocity during the first
15 s.

57. The acceleration of a particle is a(t) = t − t3 m/s2 for
0 ≤ t ≤ 1. Compute the average acceleration and average ve-
locity over the time interval [0, 1], assuming that the particle’s
initial velocity is zero.

58. Let M be the average value of f(x) = x4 on [0, 3]. Find a
value of c in [0, 3] such that f(c) = M .

59. Let f(x) =
√

x. Find a value of c in [4, 9] such that f(c) is
equal to the average of f on [4, 9].

60. Give an example of a function (necessarily discontinuous)
that does not satisfy the conclusion of the MVT for Integrals.

Further Insights and Challenges
61. An object is tossed in the air vertically from ground level
with initial velocity v0 ft/s at time t = 0. Find the average
speed of the object over the time interval [0, T ], where T is the
time the object returns to earth.

62. Review the MVT stated in Section 4.3 (Theorem 1,
p. 230) and show how it can be used, together with the Funda-
mental Theorem of Calculus, to prove the MVT for integrals.

6.3 Volumes of Revolution
A solid of revolution is a solid obtained by rotating a region in the plane aboutWe use the terms “revolve” and “rotate”

interchangeably. an axis. The sphere and right circular cone are familiar examples of such solids.
Each of these is “swept out” as a plane region revolves around an axis (Figure 1).

y

yy

y

x xx x

FIGURE 1 The right circular cone and the sphere are solids of revolution.

In general, if f(x) ≥ 0 for a ≤ x ≤ b, then the region under the graph lies
This method for computing the volume is
often referred to as the “disk method”
because the vertical slices of the solid are
circular disks.

above the x-axis. Rotating this region around the x-axis produces a solid with a
special feature: All vertical cross sections are circles (Figure 2). In fact, the vertical
cross section at location x is a circle of radius R = f(x) and has area

Area of the vertical cross section = πR2 = πf(x)2

As we saw in Section 6.2, the total volume V is equal to the integral of cross-
sectional area. Therefore, V =

∫ b
a πf(x)2 dx.
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Volume of a Solid of Revolution: Disk Method If f(x) is continuous and
f(x) ≥ 0 on [a, b], then the volume V obtained by rotating the region under
the graph about the x-axis is [with R = f(x)]:

V = π

∫ b

a
R2 dx = π

∫ b

a
f(x)2 dx 1

EXAMPLE 1 Calculate the volume V of the solid obtained by rotating the
region under y = x2 about the x-axis for 0 ≤ x ≤ 2.

2
x

2x

y

y = x2

y = x2

x

y

x

FIGURE 3 Region under y = x2

rotated about the x-axis.

Solution In this case, f(x) = x2 (Figure 3), and by Eq. (1),

V = π

∫ 2

0
R2 dx = π

∫ 2

0
(x2)2 dx = π

∫ 2

0
x4 dx = π

x5

5

∣∣∣∣
2

0

= π
25

5
=

32
5
π

We now consider some variations on the formula for a volume of revolution.
First, consider the region between two curves y = f(x) and y = g(x), where
f(x) ≥ g(x) ≥ 0 as in Figure 5 (A). When we rotate the region about the x-axis,
segment AB sweeps out the washer shown in in Figure 5 (B). This washer (also

Router

Rinner

Area = p(Router2  Rinner2)

FIGURE 4 The region between two
concentric circles is called an
“annulus,” or more informally, a
“washer.”

called an annulus – see Figure 4) has outer radius Router = f(x) and inner radius
Rinner = g(x). The area of the washer is πR2

outer − πR2
inner or π(f(x)2 − g(x)2), and

we obtain the volume of the solid of revolution as the integral of the cross-sectional
area:

V = π

∫ b

a

(
R2

outer − R2
inner

)
dx = π

∫ b

a

(
f(x)2 − g(x)2

)
dx 2

Keep in mind that f(x)2 denotes the square
(
f(x)

)2 and should not be confused
with f(x2).

EXAMPLE 2 Rotating the Area Between Two Curves Find the volume V
of the solid obtained by rotating the region between y = x2 + 4 and y = 2 about
the x-axis for 1 ≤ x ≤ 3.

bxa bxa bxa

f(x)

f(x)y y y

x x x

FIGURE 2 The cross section of a solid
of revolution is a circle of radius f(x)
and area πf(x)2.
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x

(A) (B)

y

x
bxa

B

A

y

x

f(x)

g(x)

bxa ba

B

A

y

x

f(x)
g(x)

(C)

FIGURE 5 The vertical cross section is the washer generated when AB is rotated about the x-axis.

32

2

10

1
x

y

x

yy = x2 + 4

y = 2

FIGURE 6 The area between
y = x2 + 4 and y = 2 over [1, 3]
rotated about the x-axis.

Solution The graph of y = x2 + 4 lies above the graph of y = 2 (Figure 6).
Therefore, Router = x2 + 4 and Rinner = 2. By Eq. (2),

V = π

∫ 3

1

(
R2

outer − R2
inner

)
dx = π

∫ 3

1

(
(x2 + 4)2 − 22

)
dx

= π

∫ 3

1

(
x4 + 8x2 + 12

)
dx = π

(
1
5
x5 +

8
3
x3 + 12x

)∣∣∣∣
3

1

=
2,126
15

π

Equation (2) can be modified to compute volumes of revolution about hori-
zontal lines parallel to the x-axis.

EXAMPLE 3 Revolving About a Horizontal Axis Find the volume V of
the “wedding band” in Figure 7(C), obtained by rotating the region between the
graphs of f(x) = x2 + 2 and g(x) = 4 − x2 about the horizontal line y = −3.

Solution First, let’s determine the points of intersection of the two graphs by
solving

x2 + 2 = 4 − x2 or x2 = 1

The graphs intersect at x = ±1. Figure 7(A) shows that the graph of g(x) = 4− x2

lies above the graph of f(x) = x2 + 2 on [−1, 1].
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(B) (C)

xx

yy

(A)

11
x

x

y

A

B

f(x) = x2 + 2

Rinner = f(x) + 3

y = 3

Axis of
rotation

g(x) = 4  x2

3

11 x

Router = g(x) + 3

3

FIGURE 7 Segment AB generates a
washer when rotated about the axis
y = −3, but the inner and outer radii
are 3 units longer.

Step 1. Warmup.
If we revolved about the x-axis, the volume would be given by Eq. (2):

V (about x-axis) = π

∫ 1

−1

(
g(x)2 − f(x)2

)
dx = π

∫ 1

−1

(
(4− x2)2 − (x2 +2)2

)
dx

Step 2. Revolving about y = −3.
The formula is similar, but we must use the appropriate outer and inner radii.When you set up the integral for a volume

of revolution, visualize the cross sections.
These cross sections are washers (or
disks) whose inner and outer radii depend
on the axis of rotation.

As we see in Figure 7(B), when we rotate about y = −3, AB generates a washer
whose outer and inner radii are both 3 units longer:

• Router extends from y = −3 to y = g(x), so Router = g(x)− (−3) = 7− x2

• Rinner extends from y = −3 to y = f(x), so Rinner = f(x)− (−3) = x2 +5

The volume of revolution is obtained by integrating the area of this washer:

V (about y = −3) = π

∫ 1

−1
(R2

outer − R2
inner) dx = π

∫ 1

−1

((
g(x) + 3

)2 −
(
f(x) + 3

)2
)

dx

= π

∫ 1

−1

(
(7 − x2)2 − (x2 + 5)2

)
dx

= π

∫ 1

−1

(
(49 − 14x2 + x4) − (x4 + 10x2 + 25)

)
dx

= π

∫ 1

−1
(24 − 24x2) dx = π(24x − 8x3)

∣∣∣
1

−1
= 32π

EXAMPLE 4 Find the volume of the solid obtained by rotating the region
between the graph of f(x) = 9 − x2 and the line y = 12 for 0 ≤ x ≤ 3 about

(a) the line y = 12 (b)the line y = 15.

Solution To set up the integrals, we must first visualize whether the cross section
is a disk or washer.

(a) Figure 8(B) shows that AB rotated about y = 12 generates a disk of radiusIn Figure 8, the length of AB is 12 − f(x)

rather than f(x) − 12 because the line
y = 12 lies above the graph of f(x). R = length of AB = 12 − f(x) = 12 − (9 − x2) = 3 + x2
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12
15

9

x
x

y

3

12
9

x
xx

y

3

(B) Rotation about the line y = 12(A)  f (x) = 9  x2 (C) Rotation about the line y = 15

R = 12  f (x)
Router = 15  f(x)

Rinner = 3
A

B
f (x)

12
9

x

y

3

15

FIGURE 8 Segment AB generates a disk when rotated about y = 12, but it generates a
washer when rotated about y = 15.

The volume of the solid of revolution about y = 12 is

π

∫ 3

0
R2 dx = π

∫ 3

0
(3 + x2)2 dx = π

∫ 3

0
(9 + 6x2 + x4) dx

= π

(
9x + 2x3 +

1
5
x5

) ∣∣∣∣
3

0

=
648
5

π

(b) Figure 8(C) shows that AB rotated about y = 15 generates a washer. The
outer radius of this washer is the distance from B to the line y = 15:

Router = 15 − f(x) = 15 − (9 − x2) = 6 + x2

The inner radius is Rinner = 3, so the volume of revolution about y = 15 is

π

∫ 3

0
(R2

outer − R2
inner) dx = π

∫ 3

0

(
(6 + x2)2 − 32

)
dx = π

∫ 3

0

(
36 + 12x2 + x4 − 9

)
dx

= π

(
27x + 4x3 +

1
5
x5

) ∣∣∣∣
3

0

=
1,188

5
π

We can use the disk and washer methods for solids of revolution about vertical
axes provided that we describe the graph as a function of y rather than x.

EXAMPLE 5 Revolving About a Vertical Axis Find the volume of the solid
obtained by rotating the region under the graph of f(x) = 9 − x2 for 0 ≤ x ≤ 3
about the vertical axis x = −2.

Solution Figure 9 shows that AB sweeps out a horizontal washer when rotated
about the vertical line x = −2. We are going to integrate with respect to y, so we
need the inner and outer radii of this washer as functions of y. Solving for x in
y = 9 − x2, we obtain x2 = 9 − y or x =

√
9 − y. Therefore,

Router =
√

9 − y + 2, Rinner = 2
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9 y  2

y  9 x 2

y

x
32 30

9

A By

y

x
0

A B

2
x

Rinner  = 2

Axis
x 2

2

y

Router  =
Router

Rinner

x

FIGURE 9

The region extends from y = 0 to y = 9 along the y-axis, so

π

∫ 9

0
(R2

outer − R2
inner) dy = π

∫ 9

0

(
(
√

9 − y + 2)2 − 22
)
dy

= π

∫ 9

0

(
9 − y + 4

√
9 − y

)
dy

= π

(
9y − 1

2
y2 − 8

3
(9 − y)3/2

) ∣∣∣∣
9

0

=
225
2

π

6.3 SUMMARY
• Disk method: When the region between the graph of f(x) and the x-axis for
a ≤ x ≤ bis rotated about the x-axis, we obtain a solid whose vertical cross
section is a circle of radius R = f(x) and area πR2 = πf(x)2. The volume V of
the solid is

V = π

∫ b

a
R2 dx = π

∫ b

a
f(x)2 dx

Keep in mind that f(x)2 denotes the square
(
f(x)

)2.
• Washer method: Assume that f(x) ≥ g(x) ≥ 0 for a ≤ x ≤ b. When we rotate
the region between the graphs of f(x) and g(x) about the x-axis, we obtain a solid
whose vertical cross section is a washer of outer radius Router = f(x) and inner
radius Rinner = g(x). The volume V of the solid is

V = π

∫ b

a
(R2

outer − R2
inner) dx = π

∫ b

a

(
f(x)2 − g(x)2

)
dx

• Rotation about an arbitrary horizontal line y = c: The formulas apply but the
radii must be modified appropriately. If f(x) ≥ g(x) ≥ 0, then Router = |f(x) − c|
and Rinner = |g(x) − c|. It is helpful to draw the graphs of f(x) and g(x) in order
to visualize the disks or washers that are generated.
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• These formulas also apply when we rotate about a vertical line x = c, but we
must integrate along the y axis, and the radii Router and Rinner must be expressed
as functions of y.

6.3 EXERCISES

Preliminary Questions
1. Which of the following is a solid of revolution?

(a) Sphere (b) Pyramid (c) Cylinder (d) Cube

2. True or false? When a solid is formed by rotating the region
under a graph about the x-axis, the cross sections perpendicu-
lar to the x-axis are circular disks.

3. True or false? When a solid is formed by rotating the re-
gion between two graphs about the x-axis, the cross sections
perpendicular to the x-axis are circular disks.

4. Which of the following integrals expresses the volume of
the solid obtained by rotating the area between y = f(x) and
y = g(x) over [a, b] around the x-axis [assume f(x) ≥ g(x) ≥ 0]?

(a) π

∫ b

a

(
f(x) − g(x)

)2
dx

(b) π

∫ b

a

(
f(x)2 − g(x)2

)
dx

Exercises
In Exercises 1–4, (a) sketch the solid obtained by revolving the
region under the graph of f(x) about the x-axis over the given
interval, (b) describe the cross section perpendicular to the x-
axis located at x, and (c) calculate the volume of the solid.

1. f(x) = x + 1, [0, 3] 2. f(x) = x2, [1, 3]

3. f(x) =
√

x + 1, [1, 4] 4. f(x) = x−1, [1, 2]

In Exercises 5–12, find the volume of the solid obtained by rotat-
ing the region under the graph of the function about the x-axis
over the given interval.

5. f(x) = x2 − 3x, [0, 3] 6. f(x) =
1
x2

, [1, 4]

7. f(x) = x5/3, [1, 8] 8. f(x) = 4 − x2, [0, 2]

9. f(x) =
2

x + 1
, [1, 3]

10. f(x) =
√

x4 + 1, [1, 3]

11. f(x) = ex, [0, 1]

12. f(x) =
√

cos x sin x, [0, π/2]

13. NEW Which of the integrands (i)-(iv) should be used to
compute the volume of the solid obtained by rotating region R
in Figure 10 about (a) y = 2 and (b) y = −2?

(i) (f(x)2 + 22) − (g(x)2 + 22) (ii) (f(x) + 2)2 − (g(x) + 2)2

(iii) (f(x)2 − 22) − (g(x)2 − 22) (iv) (f(x) − 2)2 − (g(x) − 2)2

14. NEW Which of the integrals (i)-(iv) should be used to
compute the volume of the solid obtained by rotating region R
in Figure 10 about y = 9?

(i) (9 + f(x))2 − (9 + g(x))2 (ii) (9 + g(x))2 − (9 + f(x))2

(iii) (9 − f(x))2 − (9 − g(x))2 (iv) (9 − g(x))2 − (9 − f(x))2

x

y

a b

y = f(x)

y = g(x)

9

-2

2

FIGURE 10

In Exercises 15–20, (a) sketch the region enclosed by the curves,
(b) describe the cross section perpendicular to the x-axis located
at x, and (c) find the volume of the solid obtained by rotating
the region about the x-axis.

15. y = x2 + 2, y = 10 − x2

16. y = x2, y = 2x + 3

17. y = 16 − x, y = 3x + 12, x = −1

18. y =
1
x

, y =
5
2
− x

19. y = sec x, y = 0, x = −π
4

, x =
π
4

20. y = sec x, y = csc x, y = 0, x = 0, and x =
π
2

.

In Exercises 21–24, find the volume of the solid obtained by ro-
tating the region enclosed by the graphs about the y-axis over
the given interval.
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21. x =
√

y, x = 0; 1 ≤ y ≤ 4

22. x =
√

sin y, x = 0; 0 ≤ y ≤ π

23. x = y2, x =
√

y; 0 ≤ y ≤ 1

24. x = 4 − y, x = 16 − y2; −3 ≤ y ≤ 4

In Exercises 25–30, find the volume of the solid obtained by
rotating region A in Figure 11 about the given axis.

x

y

1 2

6

2

y = x2 + 2

A

B

FIGURE 11

25. x-axis 26. y = −2

27. y = 2 28. y-axis

29. x = −3 30. x = 2

In Exercises 31–36, find the volume of the solid obtained by
rotating region B in Figure 11 about the given axis.

31. x-axis 32. y = −2

33. y = 6 34. y-axis

Hint for Exercise 34: Express the volume as a sum of two in-
tegrals along the y-axis, or use Exercise 28.

35. x = 2 36. x = −3

In Exercises 37–50, find the volume of the solid obtained by
rotating the region enclosed by the graphs about the given axis.

37. y = x2, y = 12 − x, x = 0, about y = −2

38. y = x2, y = 12 − x, x = 0, about y = 15

39. y = 16 − x, y = 3x + 12, x = 0, about y-axis

40. y = 16 − x, y = 3x + 12, x = 0, about x = 2

41. y =
9
x2

, y = 10 − x2, about x-axis

42. y =
9
x2

, y = 10 − x2, about y = 12

43. y =
1
x

, y =
5
2
− x, about y-axis

44. x = 2, x = 3, y = 16 − x4, y = 0, about y-axis

45. y = x3, y = x1/3, about y-axis

46. y = x3, y = x1/3, about x = −2

47. y = e−x, y = 1 − e−x, x = 0, about y = 4

48. y = cosh x, x = ±2, about x-axis

49. y2 = 4x, y = x, y = 0, about x-axis

50. y2 = 4x, y = x, about y = 8

51. Sketch the hypocycloid x2/3 + y2/3 = 1 and find the
volume of the solid obtained by revolving it about the x-axis.

52. NEW The bowl in Figure 12 (A) is 21 cm high, obtained
by rotating the curve (B) as indicated. Estimate the volume
capacity of the bowl shown by taking the average of right and
left endpoint approximations to the integral with N = 7.

7

4.1

5.5

3.5

4.7

2.8
1.9

(A) (B)

21 cm

FIGURE 12

53. NEW The region between the graphs of f(x) and g(x)
(where f(x) ≥ g(x) ≥ 0) is revolved about the line y = −3.
Use the midpoint approximation to the integral with values
from the following table to estimate the volume V of the re-
sulting solid.

x 0.1 0.3 0.5 0.7 0.9
f(x) 8 7 6 7 8
g(x) 2 3.5 4 3.5 2

54. The solid generated by rotating the region between the
branches of the hyperbola y2 − x2 = 1 about the x-axis is
called a hyperboloid (Figure 13). Find the volume of the hy-
perboloid for −a ≤ x ≤ a.

x

y

−a a

1

−1

FIGURE 13 The hyperbola with equation y2 − x2 = 1.
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55. A “bead” is formed by removing a cylinder of radius r from
the center of a sphere of radius R (Figure 14). Find the volume
of the bead with r = 1 and R = 2.

y

x

h

r

y

x
R

FIGURE 14 A bead is a sphere with a cylinder removed.

Further Insights and Challenges
56. Find the volume V of the bead (Figure 14) in terms

of r and R. Then show that V =
π
6

h3, where h is the height of

the bead. This formula has a surprising consequence: Since V
can be expressed in terms of h alone, it follows that two beads
of height 2 in., one formed from a sphere the size of an orange
and the other the size of the earth would have the same volume!
Can you explain intuitively how this is possible?

57. The solid generated by rotating the region inside the ellipse

with equation
(x

a

)2
+

( y
b

)2
= 1 around the x-axis is called an

ellipsoid. Show that the ellipsoid has volume 4
3πab2. What is

the volume if the ellipse is rotated around the y-axis?

58. A doughnut-shaped solid is called a torus (Figure 15).
Use the washer method to calculate the volume of the torus
obtained by rotating the region inside the circle with equation
(x− a)2 + y2 = b2 around the y-axis (assume that a > b). Hint:
Evaluate the integral by interpreting it as the area of a circle.

y

x
a + ba

FIGURE 15 Torus obtained by rotating a circle about the
y-axis.

59. The curve y = f(x) in Figure 16, called a tractrix, has
the following property: the tangent line at each point (x, y) on
the curve has slope

dy
dx

=
−y√
1 − y2

.

1

2

y

x

y = f (x)Rc

a

FIGURE 16 The tractrix.

Let R be the shaded region under the graph of 0 ≤ x ≤ a in
Figure 16. Compute the volume V of the solid obtained by re-
volving R around the x-axis in terms of the constant c = f(a).
Hint: Use the disk method and the substitution u = f(x) to
show that

V = π

∫ 1

c

u
√

1 − u2 du

60. Verify the formula

∫ x2

x1

(x − x1)(x − x2) dx =
1
6
(x1 − x2)

3 3

Then prove that the solid obtained by rotating the shaded re-

gion in Figure 17 about the x-axis has volume V =
π
6

BH2,

with B and H as in the figure. Hint: Let x1 and x2 be the
roots of f(x) = ax + b − (mx + c)2, where x1 < x2. Show that

V = π

∫ x2

x1

f(x) dx

and use Eq. (3).
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x

y

B

y = mx + c

y2 = ax + b

H

FIGURE 17 The line y = mx + c intersects the parabola
y2 = ax + b at two points above the x-axis.

61. Let R be the region in the unit circle lying above the cut

with the line y = mx + b (Figure 18). Assume the points where
the line intersects the circle lie above the x-axis. Use the method
of Exercise 60 to show that the solid obtained by rotating R

about the x-axis has volume V =
π
6

hd2, with h and d as in the

figure.

x2 + y2 = 1

y = mx + b

R d
h

y

x

FIGURE 18

6.4 The Method of Cylindrical Shells
In the previous two sections, we computed volumes by integrating cross-sectional
area. The Shell Method is based on a different idea and is more convenient in
some cases.

The Shell Method uses cylindrical shells like the one in Figure 1 to approx-

r
R

width r

h

FIGURE 1 The volume of the
cylindrical shell is approximately
2πRh∆r, where ∆r = R − r.

imate volumes of revolution. Let us first derive an approximation to the volume
of a cylindrical shell of height h, outer radius R, and inner radius r. The shell is
obtained by removing a cylinder of radius r from the wider cylinder of radius R,
so the shell has volume

πR2h − πr2h = πh(R2 − r2) = πh(R + r)(R − r) = πh(R + r)∆r 1

where ∆r = R − r is the shell’s width. If the shell is very thin, then R and r
are nearly equal and we may replace (R + r) by 2R in Eq. (1) to obtain the
approximation

Volume of shell ≈ 2πRh∆r = 2π(radius) × (height of shell) × (thickness) 2

Now consider a solid obtained by rotating the region under y = f(x) from
x = a to x = b about the y-axis as in Figure 2. The idea is to divide the solid
into thin concentric shells. More precisely, we divide [a, b] into N subintervals of

length ∆x =
b − a

N
with endpoints x0, x1, . . . , xN . When we rotate the thin strip

of area above [xi−1, xi] about the y-axis, we obtain a thin shell whose volume we

denote by Vi. The total volume V of the solid is equal to V =
N∑

i=1

Vi.

The top rim of the ith thin shell in Figure 2 is curved. However, when ∆x is
small, we may approximate this thin shell by the cylindrical shell (with flat rim)
of height f(xi), and use (2) to obtain

Vi ≈ 2πxif(xi)∆x = (circumference)(height of shell)(thickness)

V =
N∑

i=1

Vi ≈ 2π
N∑

i=1

xif(xi)∆x
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x

y

y = f (x)

x0 = a xi − 1 xi xN = b x

y

i th shell

y = f (x)

FIGURE 2 The shaded strip, when
rotated about the y-axis, generates a
“thin shell.”

The sum on the right is the volume of the cylindrical approximation to V illus-
trated in Figure 3. We complete the argument in the usual way. As N → ∞,
the accuracy of the approximation improves, and the sum on the right is a right-

endpoint approximation that converges to V = 2π
∫ b

a
xf(x) dx.

(A)

x

y

(B)

x

y

(C)

x

y

y = f (x)y = f (x)y = f (x)

FIGURE 3 The volume is approximated by the sum of volumes of thin cylinders.

Volume of a Solid of Revolution: The Shell Method The volume V of the
solid obtained by rotating the region under the graph of y = f(x) over the
interval [a, b] about the y-axis is equal to

V = 2π
∫ b

a
xf(x) dx = 2π

∫ b

a

(
radius

)(
height of shell

)
dx 3

EXAMPLE 1 Find the volume V of the solid obtained by rotating the area

In the Shell Method, we integrate with
respect to x even though we are rotating
about the y-axis.

under the graph of f(x) = 1 − 2x + 3x2 − 2x3 over [0, 1] about the y-axis.
It would be hard to use the disk method in
Example 1. Since the axis of revolution is
the y-axis, we would have to integrate with
respect to y. This would require finding the
inverse function g(y) = f−1(y).

Solution The solid is shown in Figure 4. By Eq. (3),

V = 2π
∫ 1

0
xf(x) dx = 2π

∫ 1

0
x(1 − 2x + 3x2 − 2x3) dx

= 2π
(

1
2
x2 − 2

3
x3 +

3
4
x4 − 2

5
x5

) ∣∣∣∣
1

0

=
11
30
π



406 CH AP TER 6 APPLICATIONS OF THE INTEGRAL

x 1 x 1

1

f (x)

1

x x

y y

FIGURE 4 The graph of
f(x) = 1 − 2x + 3x2 − 2x3 rotated
about the y-axis.

For some solids, it is necessary to modify Eq. (3) in various ways. As a first
example, let us rotate the region between the graphs of two functions f(x) and
g(x) over [a, b] about the y-axis. Assuming that f(x) ≥ g(x), the vertical segment
at location x generates a cylindrical shell of radius x and height f(x) − g(x)
(Figure 5), so the volume is

V = 2π
∫ b

a

(
radius

)(
height of shell

)
dx = 2π

∫ b

a
x
(
f(x) − g(x)

)
dx 4

x
x

y

x
x

y

f (x)
f (x) − g (x)

g (x)
FIGURE 5 The vertical segment at
location x generates a cylinder shell of
radius x and height f(x) − g(x).
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EXAMPLE 2 Rotating the Area Between Two Curves Find the volume V of
the solid obtained by rotating the area enclosed by the graphs of f(x) = x(5 − x)
and g(x) = 8 − x(5 − x) about the y-axis.

1 4 5

2

4

6

g(x) = 8 - x(5-x)

f(x) = x(5-x)

x

FIGURE 6

Solution First, find the points of intersection by solving x(5− x) = 8− x(5− x).
We obtain x(5− x) = 4 or x2 − 5x + 4 = (x− 1)(x− 4) = 0, so the curves intersect
at x = 1, 4. Sketching the graphs as in Figure 6, we see that f(x) ≥ g(x) on the
interval [1, 4] and

height of shell = f(x) − g(x) = x(5 − x) −
(
8 − x(5 − x)

)
= 10x − 2x2 − 8

V = 2π
∫ 4

1
(radius)(height of shell)dx = 2π

∫ 4

1
x
(
10x − 2x2 − 8

)
dx

= 2π
(

10
3

x3 − 1
2
x4 − 4x2

) ∣∣∣∣
4

1

= 2π
(64

3
−

(
−7

6

) )
= 45π

EXAMPLE 3 Rotating About a Vertical Axis Use the Shell Method to cal-
culate the volume V of the solid obtained by rotating the region under the graph
of f(x) = x−1/2 over [1, 4] about the axis x = −3.

Solution

Step 1. Warmup.
If we revolved about the y-axis (that is, x = 0), the volume would beThe reasoning in Example 3 shows that if

we rotate the region under y = f(x) over
[a, b] about the vertical line x = c, then the
volume is

V =2π

∫ b

a
(x − c)f(x) dx if c < a

V =2π

∫ b

a
(c − x)f(x) dx if c > b

V (about y-axis) = 2π
∫ 4

1
(radius)(height of shell)dx = 2π

∫ 4

1
x · x−1/2 dx

Step 2. Revolving about x = −3.
The formula is similar, but as we see in Figure 7, the radius of the shell is now
x − (−3) = x + 3. The height of the shell is still f(x) = x−1/2, so

V (about x = −3) = 2π
∫ 4

1
(radius)(height of shell)dx

= 2π
∫ 4

1
(x + 3)x−1/2 dx = 2π

(
2
3
x3/2 + 6x1/2

) ∣∣∣∣
4

1

=
64π
3

x

y

x

y
Axis

x = −3

x x41−3

−3

4

y = x −1/2y = x −1/2

Radius
x + 3

1FIGURE 7 Region under the graph of
y = x−1/2 over [1, 4] rotated about the
axis x = −3.

The method of cylindrical shells can be applied to rotations about horizontal
axes, but in this case, the graph must be described in the form x = g(y).
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EXAMPLE 4 Rotating About the x-Axis Use the Shell Method to compute
the volume V of the solid obtained by rotating the area under y = 9 − x2 over
[0, 3] about the x-axis.

Solution Since we are rotating about the x-axis rather than the y-axis, the Shell
Method gives us an integral with respect to y. Therefore, we solve y = 9 − x2 to
obtain x2 = 9 − y or x =

√
9 − y.

The cylindrical shells are generated by horizontal segments. The segment AB
in Figure 8 generates a cylindrical shell of radius y and height

√
9 − y (we still

use the term “height” although the shell is horizontal). Using the substitution
u = 9 − y, du = −dy in the resulting integral, we obtain

REMINDER After making the
substitution u = 9 − y, the limits of
integration must be changed. Since
u(0) = 9 and u(9) = 0, we change∫ 9

0
to

∫ 0

9
.

V = 2π
∫ 9

0
(radius)(height of shell)dy = 2π

∫ 9

0
y

√
9 − y dy = −2π

∫ 0

9
(9 − u)

√
udu

= 2π
∫ 9

0
(9u1/2 − u3/2) du = 2π

(
6u3/2 − 2

5
u5/2

) ∣∣∣∣
9

0

=
648
5

π

y
BA

3

y = 9 − x2 y = 9 − x2

x =

9
y y

x x

9 − y

3

FIGURE 8 Shell generated by a
horizontal segment in the region under
the graph of y = 9 − x2.

6.4 SUMMARY
• If f(x) ≥ 0, then the volume V of the solid obtained by rotating the region
underneath the graph of y = f(x) over [a, b] about the y-axis is

V = 2π
∫ b

a
(radius)(height of shell)dx = 2π

∫ b

a
xf(x) dx

• If we revolve the region about the vertical axis x = c rather than the y-axis,
then the radius of the shell (distance to the axis of rotation) is no longer x. For
example, if c < a, the radius is (x − c) and

V = 2π
∫ b

a
(radius)(height of shell)dx =






2π
∫ b

a
(x − c)f(x) dx if c < a

2π
∫ b

a
(c − x)f(x) dx if c > b
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• We can use the Shell Method to compute volumes of revolution about the x-axis.
It is necessary to express the curve in the form x = g(y):

V = 2π
∫ d

c
(radius)(height of shell)dy = 2π

∫ d

c
y g(y) dy

6.4 EXERCISES

Preliminary Questions
1. Consider the region R under the graph of the constant

function f(x) = h over the interval [0, r]. What are the height
and radius of the cylinder generated when R is rotated about:

(a) the x-axis (b) the y-axis

2. Let V be the volume of a solid of revolution about the

y-axis.

(a) Does the Shell Method for computing V lead to an integral
with respect to x or y?

(b) Does the Disk or Washer Method for computing V lead to
an integral with respect to x or y?

Exercises
In Exercises 1–10, sketch the solid obtained by rotating the re-
gion underneath the graph of the function over the given inter-
val about the y-axis and find its volume.
1. f(x) = x3, [0, 1] 2. f(x) =

√
x, [0, 4]

3. f(x) = 3x + 2, [2, 4] 4. f(x) = 1 + x2, [1, 3]

5. f(x) = 4 − x2, [0, 2] 6. f(x) =
√

x2 + 9, [0, 3]

7. f(x) = sin(x2), [0,
√
π] 8. f(x) = x−1, [1, 3]

9. f(x) = x + 1 − 2x2, [0, 1]

10. f(x) =
x√

1 + x3
, [1, 4]

In Exercises 11–14, use the Shell Method to compute the vol-
ume of the solids obtained by rotating the region enclosed by the
graphs of the functions about the y-axis.

11. y = x2, y = 8 − x2, x = 0

12. y = 8 − x3, y = 8 − 4x

13. y =
√

x, y = x2

14. y = 1 − |x − 1|, y = 0

In Exercises 15–16, use the Shell Method to compute the
volume of rotation of the region enclosed by the curves about
the y-axis. Use a computer algebra system or graphing utility
to find the points of intersection numerically.

15. y = 1
2x2, y = sin(x2)

16. y = e−x2/2, y = x, x = 0

In Exercises 17–22, sketch the solid obtained by rotating the
region underneath the graph of the function over the interval
about the given axis and calculate its volume using the Shell
Method.

17. f(x) = x3, [0, 1], x = 2

18. f(x) = x3, [0, 1], x = −2

19. f(x) = x−4, [−3,−1], x = 4

20. f(x) =
1√

x2 + 1
, [0, 2], x = 0

21. f(x) = a − bx, [0, a/b], x = −1, a, b > 0

22. f(x) = 1 − x2, [−1, 1], x = c (with c > 1)

In Exercises 23–28, use the Shell Method to calculate the vol-
ume of rotation about the x-axis for the region underneath the
graph.

23. y = x, 0 ≤ x ≤ 1

24. y = 4 − x2, 0 ≤ x ≤ 2

25. y = x1/3 − 2, 8 ≤ x ≤ 27

26. y = x−1, 1 ≤ x ≤ 4. Sketch the region and express the
volume as a sum of two integrals.

27. y = x−2, 2 ≤ x ≤ 4

28. y =
√

x, 1 ≤ x ≤ 4

29. Use both the Shell and Disk Methods to calculate the vol-
ume of the solid obtained by rotating the region under the
graph of f(x) = 8 − x3 for 0 ≤ x ≤ 2 about:

(a) the x-axis (b) the y-axis
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30. Sketch the solid of rotation about the y-axis for the re-
gion under the graph of the constant function f(x) = c (where
c > 0) for 0 ≤ x ≤ r.

(a) Find the volume without using integration.

(b) Use the Shell Method to compute the volume.

31. Assume that the graph in Figure 9(A) can be described
by both y = f(x) and x = h(y). Let V be the volume of the
solid obtained by rotating the region under the curve about the
y-axis.

(a) Describe the figures generated by rotating segments AB
and CB about the y-axis.

(b) Set up integrals that compute V by the Shell and Disk
Methods.

x

y

x

y
1.3

A' B'A B

C'C
(B)(A)

y = g(x)y = f(x)
x = h(y)

22

FIGURE 9

32. Let W be the volume of the solid obtained by ro-
tating the region under the curve in Figure 9(B) about the
y-axis.

(a) Describe the figures generated by rotating segments A′B′

and A′C′ about the y-axis.

(b) Set up an integral that computes W by the Shell Method.

(c) Explain the difficulty in computing W by the Washer
Method.

In Exercises 33–38, use the Shell Method to find the volume of
the solid obtained by rotating region A in Figure 10 about the
given axis.

x

y

6

2

y = x2 + 2

A

B

1 2
FIGURE 10

33. y-axis 34. x = −3

35. x = 2 36. x-axis

37. y = −2 38. y = 6

In Exercises 39–44, use the Shell Method to find the volumes of
the solids obtained by rotating region B in Figure 10 about the
given axis.

39. y-axis 40. x = −3

41. x = 2 42. x-axis

43. y = −2 44. y = 8

45. Use the Shell Method to compute the volume of a sphere
of radius r.

46. Use the Shell Method to calculate the volume V of the
“bead” formed by removing a cylinder of radius r from the
center of a sphere of radius R (compare with Exercise 55 in
Section 6.3).

47. Use the Shell Method to compute the volume of the torus
obtained by rotating the interior of the circle (x− a)2 + y2 = r2

about the y-axis, where a > r. Hint: Evaluate the integral by
interpreting part of it as the area of a circle.

48. Use the Shell or Disk Method (whichever is easier) to com-
pute the volume of the solid obtained by rotating the region in
Figure 11 about:

(a) the x-axis (b) the y-axis

x

y

y = x − x12

1
FIGURE 11

49. Use the most convenient method to compute the volume
of the solid obtained by rotating the region in Figure 12 about
the axis:

(a) x = 4 (b) y = −2

x

y
y = x3 + 2

y = 4 − x2

1 2
FIGURE 12
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Further Insights and Challenges
50. The surface area of a sphere of radius r is 4πr2.
Use this to derive the formula for the volume V of a sphere of
radius R in a new way.

(a) Show that the volume of a thin spherical shell of inner
radius r and thickness ∆x is approximately 4πr2∆x.

(b) Approximate V by decomposing the sphere of radius R
into N thin spherical shells of thickness ∆x = R/N .

(c) Show that the approximation is a Riemann sum which
converges to an integral. Evaluate the integral.

51. Let R be the region bounded by the ellipse
(x

a

)2
+

( y
b

)2
=

1 (Figure 13). Show that the solid obtained by rotating R about
the y-axis (called an ellipsoid) has volume 4

3πa2b.

x

y

R

b

a

FIGURE 13 The ellipse
(x

a

)2
+

( y
b

)2
= 1.

52. The bell-shaped curve in Figure 14 is the graph of a certain
function y = f(x) with the following property: The tangent line
at a point (x, y) on the graph has slope dy/dx = −xy. Let R be
the shaded region under the graph for 0 ≤ x ≤ a in Figure 14.
Use the Shell Method and the substitution u = f(x) to show
that the solid obtained by revolving R about the y-axis has
volume V = 2π(1 − c), where c = f(a). Observe that as c → 0,
the region R becomes infinite but the volume V approaches 2π.

1

y = f (x)

R
c

y

xa
FIGURE 14 The bell-shaped curve.

6.5 Work and Energy
All physical tasks, from boiling water to turning on a cell phone, require an ex-“For those who want some proof that

physicists are human, the proof is in the
idiocy of all the different units which they
use for measuring energy.”

—Richard Feynman,
The Character of Physical Law

penditure of energy. When a force is applied to an object to move it, the energy
expended is called work. If a constant force F is applied through a distance d,
then the work W is defined as “force times distance” (Figure 1)

A Distance d B

Force F

FIGURE 1 The work expended to
move the object from A to B is
W = F · d.

W = F · d 1

In the metric system, the unit of force is the newton (abbreviated N), defined as
1 kg-m/s2. Energy and work are both measured in units of the joule (J), equal to
1 N-m. In the British system, the unit of force is the pound, and both energy and
work are measured in foot-pounds (ft-lb). Another unit of energy is the calorie.
One ft-lb is approximately 0.738 J or 3.088 calories.

To become familiar with the units, let’s calculate the work W required to lift a
2-kg stone 3 m above the ground. Gravity pulls down on the stone of mass m with
a force equal to −mg, where g = 9.8 m/s2. Therefore, lifting the stone requires an
upward vertical force F = mg, and the work expended is

W = (mg)h︸ ︷︷ ︸
F · d

= (2 kg)(9.8 m/s2)(3 m) = 58.8 J

While the kilogram is a unit of mass, the pound is a unit of force rather than
mass, so the factor g does not appear when computing work against gravity in
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the British system. The work required to lift a 2-lb stone 3 ft above ground is

W = (2 lb)(3 ft)︸ ︷︷ ︸
F · d

= 6 ft-lb

We use integration to calculate work when the force is not constant. Suppose
that the force F (x) varies as the object moves from a to b along the x-axis.
Then Eq. (1) does not apply directly, but we may break up the task into a large
number of smaller tasks where Eq. (1) gives a good approximation. Divide [a, b]

into N subintervals of length ∆x =
b − a

N
, with endpoints: a = x0, x1, x2, . . . ,

xN−1, xN = b. Let Wi be the work required to move the object from xi−1 to xi

(Figure 2). If ∆x is small, then the force F (x) is nearly constant on the interval
xi −1x1 xia = x0 xN = b

FIGURE 2 The work to move an
object from xi−1 to xi is
approximately F (xi)∆x.

[xi−1, xi] with value F (xi), so Wi ≈ F (xi)∆x. Summing the contributions, we
obtain

W =
N∑

i=1

Wi ≈
N∑

i=1

F (xi)∆x

︸ ︷︷ ︸
Right-endpoint approximation

The sum on the right is a right-endpoint approximation converging to
∫ b

a
F (x) dx.

This leads to the following definition.

DEFINITION Work The work performed in moving an object along the x-
axis from a to b by applying a force of magnitude F (x) is

W =
∫ b

a
F (x) dx 2

One typical calculation involves finding the work required to stretch a spring.
Assume that the end of the spring has position x = 0 at equilibrium, when no
force is acting (Figure 3). The spring may be stretched x units (or compressed
if x < 0). Hooke’s Law states that the spring exerts a restoring force −kx in
the opposite direction, where k is the spring constant, measured in units of
kilograms per second squared.

x0

Equilibrium
position

FIGURE 3 According to Hooke’s Law,
a spring stretched x units past
equilibrium exerts a restoring force
−kx in the opposite direction.

EXAMPLE 1 Hooke’s Law Assuming a spring constant of k = 400 kg/s2,
find the work (in joules) required to (a) stretch the spring 10 cm beyond equilib-
rium and (b) compress the spring 2 additional cm when it is already compressed
3 cm.

Solution By Hooke’s Law, the spring exerts a restoring force of −400x N when it
is stretched x units. Therefore, we must apply a force F (x) = 400x N to stretch the
spring further. To compute the work in joules, we must convert from centimeters
to meters since 1 J is equal to a Newton-meter. Therefore,

Hooke’s Law is named after the English
scientist, inventor, and architect Robert
Hooke (1635–1703) who made important
discoveries in physics, astronomy,
chemistry, and biology. He was a pioneer
in the use of the microscope to study
organisms. Unfortunately, Hooke was
involved in several bitter disputes with
other scientists, most notably with his
contemporary Isaac Newton. Newton was
furious when Hooke criticized his work on
optics. Later, Hooke told Newton that he
believed Kepler’s Laws would follow from
an inverse square law of gravitation.
Newton refused to acknowledge Hooke’s
contributions in his masterwork Principia. It
was in a letter to Hooke that Newton made
his famous remark “If I have seen further it
is by standing on the shoulders of giants.”

(a) The work required to stretch the spring 10 cm (0.1 m) beyond equilibrium is

W =
∫ 0.1

0
400xdx = 200x2

∣∣∣
0.1

0
= 2 J
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(b) If the spring is at position x = −0.03 m, then the work W required to
compress it further to x = −0.05 m is

W =
∫ −0.05

−0.03
400xdx = 200x2

∣∣∣
−0.05

−0.03
= 0.5 − 0.18 = 0.32 J

Note that we integrate from right to left (the lower limit −0.03 is larger than the
upper limit −0.05) because we’re compressing the spring to the left.

In the next two examples, we compute work in a different way. In these ex-

amples, the formula W =
∫ b

a
F (x) dx cannot be used because we are not moving

a single object through a fixed distance. Rather, each thin layer of the object is
moved through a different distance. We compute total work by “summing” (i.e.,
integrating) the work performed on each thin layer.

EXAMPLE 2 Building a Cement Column Compute the work (against grav-
ity) required to build a cement column of height 5 m and square base of side 2 m.
Assume that cement has density 1,500 kg/m3.

Solution Think of the column as a stack of N thin layers of width ∆y = 5/N .On the earth’s surface, work against
gravity is equal to the force mg times the
vertical distance through which the object
is moved. No work against gravity is done
when an object is moved sideways.

The work consists of lifting up these layers and placing them on the stack (Figure
4), but the work performed on a given layer depends on how high we lift it. First,

5

2
2

y

FIGURE 4 Total work is the sum of
the work performed on each layer of
the column.

let us compute the gravitational force on a thin layer of width ∆y:

Volume of layer = area × width = 4∆y m3

Mass of layer = density × volume = 1,500 · 4∆y kg

Force on layer = g × mass = 9.8 · 1,500 · 4∆y = 58,800∆y N

The work required to raise this layer to height y is approximately equal to the
force times the distance y, that is, 58,800y∆y. We set W (y) = 58,800y and write

Work performed lifting layer to height y ≈ W (y)∆y

This is only an approximation because the layer has a nonzero width and the
cement particles at the top have been lifted a little bit higher than those at the
bottom.

The ith layer is lifted to height yi = i∆y, and the total work performed is

W ≈
N∑

i=1

W (yi)∆y

The sum on the right is a right-endpoint approximation to
∫ 5
0 W (y) dy. Letting

N tend to ∞, we obtain

W =
∫ 5

0
W (y) dy =

∫ 5

0
58,800y dy = 58,800

y2

2

∣∣∣∣
5

0

= 735,000 J

EXAMPLE 3 Pumping Water out of a Tank A spherical tank of radius R
meters with a small hole at the top is filled with water. How much work (against
gravity) is done pumping the water out through the hole? The density of water is
1,000 kg/m3.
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Solution As in the previous example, we divide the sphere into N thin layers of

width ∆y =
2R

N
. We place the origin of our coordinate system at the center of the

sphere because this leads to a simple formula for the radius x of the cross section
at height y. Referring to Figure 5, we see that x =

√
R2 − y2 by the Pythagorean

Theorem.

Step 1. Approximate the work performed on a single layer.
The thin layer located at y is nearly cylindrical of height ∆y and radius x =√

R2 − y2, so its volume is

Volume of layer at y ≈ πx2∆y = π(R2 − y2)∆y m3

Furthermore,

Mass of ith layer = density × volume ≈ 1,000π(R2 − y2)∆y kg

Force on ith layer = g × mass ≈ (9.8)1,000π(R2 − y2)∆y N

We must llift up the water in this layer a vertical distance R − y (no work
against gravity is required to move an object sideways), so the work performed
on the layer is approximately

Force against gravity︷ ︸︸ ︷
9,800π(R2 − y2)∆y ·

Vertical distance moved︷ ︸︸ ︷
(R − y) =

Call this W (y)
︷ ︸︸ ︷
9,800π(R3 − R2y − Ry2 + y3)∆y

Let yi be the height of the ith layer. Then with W (y) as indicated,

Work performed on ith layer ≈ W (yi)∆y

Step 2. Integrate the work performed on the layers.
As in Example 2, the total work W is the sum of the work performed on the

N layers. Thus W ≈
N∑

i=1

W (yi)∆y and in the limit as N → ∞, we obtain the

integral of W (y). The integral extends from −R to R because the y-coordinate
along the sphere varies from −R to R:

W =
∫ R

−R
W (y) dy = 9,800π

∫ R

−R
(R3 − R2y − Ry2 + y3) dy 3

= 9,800π
(

R3y − 1
2
R2y2 − 1

3
Ry3 +

1
4
y4

) ∣∣∣∣
R

−R

=
39,200π

3
R4 J

6.5 SUMMARY
• The work W performed when a force F is applied to move an object along a
straight line:

Constant force: W = F · d, Variable force: W =
∫ b

a
F (x) dx
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Water exits from
hole at the top

Radius at height y isThis layer is
pumped up a vertical
distance R – yi

y = 0
R

x =   R2 − y2

y
yi − 1

y1
y0 = −R 

yN = R 

yi

y = 0

y ∆y

y0 = −R 

y = R 

FIGURE 5 The radius of a thin layer
at height y is x =

√
R2 − y2.

• In some cases, the work is computed by decomposing an object into N thin

layers of thickness ∆y =
b − a

N
(where the object extends from y = a to y = b).

We approximate the work Wi performed on the ith layer as Wi ≈ W (yi)∆y for

some function W (y). The total work is equal to W =
∫ b

a
W (y) dy.

6.5 EXERCISES

Preliminary Questions
1. Why is integration needed to compute the work performed

in stretching a spring?

2. Why is integration needed to compute the work performed
in pumping water out of a tank but not to compute the work

performed in lifting up the tank?

3. Which of the following represents the work required to
stretch a spring (with spring constant k) a distance x beyond
its equilibrium position: kx, −kx, 1

2mk2, 1
2kx2, or 1

2mx2?

Exercises
1. How much work is done raising a 4-kg mass to a height of

16 m above ground?

2. How much work is done raising a 4-lb mass to a height of
16 ft above ground?

In Exercises 3–6, compute the work (in joules) required to
stretch or compress a spring as indicated, assuming that the
spring constant is k = 150 kg/s2.

3. Stretching from equilibrium to 12 cm past equilibrium

4. Compressing from equilibrium to 4 cm past equilibrium

5. Stretching from 5 to 15 cm past equilibrium

6. Compressing the spring 4 more cm when it is already com-
pressed 5 cm

7. If 5 J of work are needed to stretch a spring 10 cm beyond
equilibrium, how much work is required to stretch it 15 cm
beyond equilibrium?

8. If 5 J of work are needed to stretch a spring 10 cm beyond
equilibrium, how much work is required to compress it 5 cm
beyond equilibrium?

9. If 10 ft-lb of work are needed to stretch a spring 1 ft beyond
equilibrium, how far will the spring stretch if a 10-lb weight is
attached to its end?

10. Show that the work required to stretch a spring
from position a to position b is 1

2k(b2 − a2), where k is the
spring constant. How do you interpret the negative work ob-
tained when |b| < |a|?

In Exercises 11–14, calculate the work against gravity required
to build the structure out of brick using the method of Examples
2 and 3. Assume that brick has density 80 lb/ft3.

11. A tower of height 20 ft and square base of side 10 ft

12. A cylindrical tower of height 20 ft and radius 10 ft

13. A 20-ft-high tower in the shape of a right circular cone
with base of radius 4 ft

14. A structure in the shape of a hemisphere of radius 4 ft

15. Built around 2600 bce, the Great Pyramid of Giza in
Egypt is 485 ft high (due to erosion, its current height is slightly
less) and has a square base of side 755.5 ft (Figure 6). Find the
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work needed to build the pyramid if the density of the stone is
estimated at 125 lb/ft3.

FIGURE 6 The Great Pyramid in Giza, Egypt.

In Exercises 16–20, calculate the work (in joules) required to
pump all of the water out of the tank. Assume that the tank is
full, distances are measured in meters, and the density of water
is 1,000 kg/m3.

16. The box in Figure 7; water exits from a small hole at the
top.

8
4

5

Water exits here

FIGURE 7

17. The hemisphere in Figure 8; water exits from the spout as
shown.

102

FIGURE 8

18. The conical tank in Figure 9; water exits through the spout
as shown.

10

52

FIGURE 9

19. The horizontal cylinder in Figure 10; water exits from a
small hole at the top. Hint: Evaluate the integral by interpret-
ing part of it as the area of a circle.

Water exits here

r

FIGURE 10

20. The trough in Figure 11; water exits by pouring over the
sides.

h

a

cb

FIGURE 11

21. Find the work W required to empty the tank in Figure 7
if it is half full of water.

22. Assume the tank in Figure 7 is full of water and let
W be the work required to pump out half of the water. Do you
expect W to equal the work computed in Exercise 21? Explain
and then compute W .

23. Find the work required to empty the tank in Figure 9 if it
is half full of water.

24. Assume the tank in Figure 9 is full of water and find the
work required to pump out half of the water.

25. Assume that the tank in Figure 9 is full.

(a) Calculate the work F (y) required to pump out water until
the water level has reached level y.
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(b) Plot F (y).

(c) What is the significance of F ′(y) as a rate of
change?
(d) If your goal is to pump out all of the water, at
which water level y0 will half of the work be done?

26. How much work is done lifting a 25-ft chain over the side
of a building (Figure 12)? Assume that the chain has a density
of 4 lb/ft. Hint: Break up the chain into N segments, estimate
the work performed on a segment, and compute the limit as
N → ∞ as an integral.

Segment of
length ∆y

y

FIGURE 12 The small segment of the chain of length ∆y
located y feet from the top is lifted through a vertical distance
y.

27. How much work is done lifting a 3-m chain over the side
of a building if the chain has mass density 4 kg/m?

28. An 8-ft chain weighs 16 lb. Find the work required to lift
the chain over the side of a building.

29. A 20-ft chain with mass density 3 lb/ft is initially coiled on
the ground. How much work is performed in lifting the chain
so that it is fully extended (and one end touches the ground)?

30. How much work is done lifting a 20-ft chain with mass
density 3 lb/ft (initially coiled on the ground) so that its top
end is 30 ft above the ground?

31. A 1,000-lb wrecking ball hangs from a 30-ft cable of den-
sity 10 lb/ft attached to a crane. Calculate the work done if
the crane lifts the ball from ground level to 30 ft in the air by
drawing in the cable.

In Exercises 32–34, use Newton’s Universal Law of Gravity,
according to which the gravitational force between two objects
of mass m and M separated by a distance r has magnitude
GMm/r2, where G = 6.67 × 10−11 m3kg−1s−1. Although the
Universal Law refers to point masses, Newton proved that it
also holds for uniform spherical objects, where r is the distance
between their centers.

32. Two spheres of mass M and m are separated by a distance
r1. Show that the work required to increase the separation to
a distance r2 is equal to W = GMm(r−1

1 − r−1
2 ).

33. Use the result of Exercise 32 to calculate the work required
to place a 2,000-kg satellite in an orbit 1,200 km above the sur-
face of the earth. Assume that the earth is a sphere of mass
Me = 5.98 × 1024 kg and radius re = 6.37 × 106 m. Treat the
satellite as a point mass.

34. Use the result of Exercise 32 to compute the work required
to move a 1,500-kg satellite from an orbit 1,000 to 1,500 km
above the surface of the earth.

35. Assume that the pressure P and volume V of the gas in a
30-in. cylinder of radius 3 in. with a movable piston are related
by PV 1.4 = k, where k is a constant (Figure 13). When the
cylinder is full, the gas pressure is 200 lb/in.2.

(a) Calculate k.

(b) Calculate the force on the piston as a function of the length
x of the column of gas (the force is PA, where A is the piston’s
area).

(c) Calculate the work required to compress the gas column
from 30 to 20 in.

x

3

FIGURE 13 Gas in a cylinder with a piston.

Further Insights and Challenges
36. A 20-ft chain with linear mass density

ρ(x) = 0.02x(20 − x) lb/ft

lies on the ground.

(a) How much work is done lifting the chain so that it is fully
extended (and one end touches the ground)?

(b) How much work is done lifting the chain so that its top
end has a height of 30 ft?

37. Work-Kinetic Energy Theorem The kinetic en-
ergy of an object of mass m moving with velocity v is KE =
1
2mv2.

(a) Suppose that the object moves from x1 to x2 during the
time interval [t1, t2] due to a net force F (x) acting along the
interval [x1, x2]. Let x(t) be the position of the object at time
t. Use the Change of Variables formula to show that the work
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performed is equal to

W =

∫ x2

x1

F (x) dx =

∫ t2

t1

F (x(t))v(t)dt

(b) By Newton’s Second Law, F (x(t)) = ma(t), where a(t) is
the acceleration at time t. Show that

d
dt

(
1
2
mv(t)2

)
= F (x(t))v(t)

(c) Use the FTC to show that the change in kinetic energy
during the time interval [t1, t2] is equal to

∫ t2

t1

F (x(t))v(t)dt.

(d) Prove the Work-Kinetic Energy Theorem: The change in
KE is equal to the work W performed.

38. A model train of mass 0.5 kg is placed at one end of
a straight 3-m electric track. Assume that a force F (x) =
3x − x2 N acts on the train at distance x along the track. Use
the Work-Kinetic Energy Theorem (Exercise 37) to determine
the velocity of the train when it reaches the end of the track.

39. With what initial velocity v0 must we fire a rocket so it
attains a maximum height r above the earth? Hint: Use the re-
sults of Exercises 32 and 37. As the rocket reaches its maximum
height, its KE decreases from 1

2mv2
0 to zero.

40. With what initial velocity must we fire a rocket so it at-
tains a maximum height of r = 20 km above the surface of the
earth?

41. Calculate escape velocity, the minimum initial velocity
of an object to ensure that it will continue traveling into space
and never fall back to earth (assuming that no force is applied
after takeoff). Hint: Take the limit as r → ∞ in Exercise 39.

CHAPTER REVIEW EXERCISES
In Exercises 1–6, find the area of the region bounded by the
graphs of the functions.

1. y = sin x, y = cos x, 0 ≤ x ≤ 5π
4

2. f(x) = x3 − 2x2 + x, g(x) = x2 − x

3. f(x) = x2 + 2x, g(x) = x2 − 1, h(x) = x2 + x − 2

4. f(x) = sin x, g(x) = sin 2x,
π
3
≤ x ≤ π

5. y = ex, y = 1 − x, x = 1

6. y = cosh 1 − cosh x, y = cosh x − cosh 1

In Exercises 7–10, sketch the region bounded by the graphs of
the functions and find its area.

7. f(x) = x3 − x2 − x + 1, g(x) =
√

1 − x2, 0 ≤ x ≤ 1
Hint: Use geometry to evaluate the integral.

8. x =
1
2
y, x = y

√
1 − y2, 0 ≤ y ≤ 1

9. y = 4 − x2, y = 3x, y = 4

10. x = y3 − 2y2 + y, x = y2 − y

11. Use a graphing utility to locate the points of inter-
section of y = e−x and y = 1 − x2 and find the area between
the two curves (approximately).

12. Figure 1 shows a solid whose horizontal cross section at
height y is a circle of radius (1 + y)−2 for 0 ≤ y ≤ H . Find the
volume of the solid.

y

H

FIGURE 1

13. Find the total weight of a 3-ft metal rod of linear density

ρ(x) = 1 + 2x +
2
9
x3 lb/ft.

14. Find the flow rate (in the correct units) through a pipe of
diameter 6 cm if the velocity of fluid particles at a distance r
from the center of the pipe is v(r) = (3 − r) cm/s.

In Exercises 15–20, find the average value of the function over
the interval.

15. f(x) = x3 − 2x + 2, [−1, 2]

16. f(x) =
√

9 − x2, [0, 3] Hint: Use geometry to evaluate
the integral.

17. f(x) = |x|, [−4, 4] 18. f(x) = x[x], [0, 3]

19. f(x) = x cosh(x2), [0, 1] 20. f(x) =
ex

1 + e2x
,

[
0,

1
2

]

21. The average value of g(t) on [2, 5] is 9. Find

∫ 5

2

g(t)dt.
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22. For all x ≥ 0, the average value of R(x) over [0, x] is equal
to x. Find R(x).

23. Use the Shell Method to find the volume of the solid ob-
tained by revolving the region between y = x2 and y = mx
about the x-axis (Figure 2).

y = x2

y = mx

y

x
FIGURE 2

24. Use the washer method to find the volume of the solid ob-
tained by revolving the region between y = x2 and y = mx
about the y-axis (Figure 2).

25. Let R be the intersection of the circles of radius 1 centered
at (1, 0) and (0, 1). Express as an integral (but do not evalu-
ate): (a) the area of R and (b) the volume of revolution of R
about the x-axis.

26. Use the Shell Method to set up an integral (but do not
evaluate) expressing the volume of the solid obtained by ro-
tating the region under y = cos x over [0, π/2] about the line
x = π.

In Exercises 27–35, find the volume of the solid obtained by
rotating the region enclosed by the curves about the given axis.

27. y = 2x, y = 0, x = 8; x-axis

28. y = 2x, y = 0, x = 8; axis x = −3

29. y = x2 − 1, y = 2x − 1, axis x = −2

30. y = x2 − 1, y = 2x − 1, axis y = 4

31. y2 = x3, y = x, x = 8; axis x = −1

32. y2 = x−1, x = 1, x = 3; axis y = −3

33. y = −x2 + 4x − 3, y = 0; axis y = −1

34. x = 4y − y3, y = 0, y = 2; y-axis

35. y2 = x−1, x = 1, x = 3; axis x = −3

In Exercises 36–38, the regions refer to the graph of the hyper-
bola y2 − x2 = 1 in Figure 3. Calculate the volume of revolution
about both the x- and y-axes.

x

y

−c c

3
2

1

−1

−2
−3

y = x

y2 − x2 = 1

FIGURE 3

36. The shaded region between the upper branch of the hyper-
bola and the x-axis for −c ≤ x ≤ c.

37. The region between the upper branch of the hyperbola and
the line y = x for 0 ≤ x ≤ c.

38. The region between the upper branch of the hyperbola and
y = 2.

39. Let a > 0. Show that when the region between y =
a
√

x − ax2 and the x-axis is rotated about the x-axis, the re-
sulting volume is independent of the constant a.

40. A spring whose equilibrium length is 15 cm exerts a force
of 50 N when it is stretched to 20 cm. Find the work required
to stretch the spring from 22 to 24 cm.

In Exercises 41–42, water is pumped into a spherical tank of
radius 5 ft from a source located 2 ft below a hole at the bottom
(Figure 4). The density of water is 64.2 lb/ft3.

5

2

Water source

FIGURE 4

41. Calculate the work required to fill the tank.

42. Calculate the work F (h) required to fill the tank to height
h ft from the bottom of the sphere.

43. A container weighing 50 lb is filled with 20 ft3 of water.
The container is raised vertically at a constant speed of 2 ft/s
for 1 min, during which time it leaks water at a rate of 1

3 ft3/s.
Calculate the total work performed in raising the container.
The density of water is 64.2 lb/ft3.

44. Let W be the work (against the sun’s gravitational force)
required to transport an 80-kg person from Earth to Mars when
the two planets are aligned with the sun at their minimal dis-
tance of 55.7× 106 km. Use Newton’s Universal Law of Gravity
(see Exercises 32–34 in Section 6.5) to express W as an integral
and evaluate it. The sun has mass Ms = 1.99 × 1030 kg, and
the distance from the sun to the earth is 149.6 × 106 km.


