GROUP WORK 3, SECTION 4.1
 Two Easy Pieces

Let $f(x)$ be the piecewise-continuous function graphed below.

1. Compute L_{2} and R_{2}, the left-endpoint and right-endpoint Riemann sum approximations for $\int_{0}^{4} f(x) d x$ with two subintervals. How do you think these values compare to the actual value of the integral?
2. Now compute L_{4} and R_{4}. Which appears to be the best approximation to the actual value of the integral?
3. Now compute L_{5} and L_{6}. Which do you think is closer to the actual value?
4. The values of L_{9}, L_{10}, and L_{11} are given in the following table, along with the actual value of the integral.

L_{9}	7.173
L_{10}	6.560
L_{11}	7.149
$\int_{0}^{4} f(x) d x$	7

Can you explain why L_{10} is a poorer approximation than L_{9} and L_{11} ?
5. Do you think a similar pattern holds for L_{14}, L_{15}, and L_{16} ? Does this pattern also hold for higher values of n ?

6 What do you think will happen to this discrepancy as $n \rightarrow \infty$?

