GROUP WORK 3, SECTION 4.1

Two Easy Pieces

Let f(x) be the piecewise-continuous function graphed below.

1. Compute L_2 and R_2 , the left-endpoint and right-endpoint Riemann sum approximations for $\int_0^4 f(x) dx$ with two subintervals. How do you think these values compare to the actual value of the integral?

2. Now compute L_4 and R_4 . Which appears to be the best approximation to the actual value of the integral?

3. Now compute L_5 and L_6 . Which do you think is closer to the actual value?

Two Easy Pieces

4. The values of L_9 , L_{10} , and L_{11} are given in the following table, along with the actual value of the integral.

L9	7.173
L_{10}	6.560
L_{11}	7.149
$\int_0^4 f(x)dx$	7

Can you explain why L_{10} is a poorer approximation than L_9 and L_{11} ?

5. Do you think a similar pattern holds for L_{14} , L_{15} , and L_{16} ? Does this pattern also hold for higher values of *n*?

6 What do you think will happen to this discrepancy as $n \to \infty$?