CSC 362 Midterm 2 answer key
1) Write a C function which is passed two strings, both ending with ‘\0’. The function search the first string once for every character in the second string and if the character of the second string is found in the first, it will replace that character in the first string with ‘*’. Additionally, the function will return the number of characters replaced. You may assume that the second string has no repeated characters. For instance, if the first string is “Frank Zappa” and the second is “apz”, then the string is changed to be “Fr*nk Z****” and 5 is returned (5 characters replaced). (10 points)

int replace(char *s1, char *s2)

{

 char *temp;

 int count=0;

 while(*s2!='\0')

 {

 temp=s1;

 while(*temp!='\0')

 {

 if(*temp==*s2) {

 temp='';

 count++;

 }

 temp++;

 }

 s2++;

 }

 return count;

}
2) A computer has an 128Mx16 memory and is word addressable. Memory is built from 16Mx4 chips. Answer the following questions: (8 points)

a. How many chips make up all of memory?

128Mx16/16Mx4 = 8 * 4 = 32 chips
b. How many banks are there?
32 chips / (16 bits per bank / 4 bits per chip) = 8 banks

c. How many bits are needed to form a complete address?
Log 128M = 27 bits
d. Assuming low-order interleaving for memory, which bits from part c are used to denote the bank and which bits are used to denote the address on the chip? Use terms like “leftmost” and “rightmost”

With low-order interleave, the left-most bits is the address sent to the chip and the right-most bits are the bank select. With 8 banks, we need 3 bits, so we have the left-most 24 bits for the address on the chip and the right-most 3 bits for the bank select.

3) Rewrite the following MARIE code in C. Attempt to be as concise as possible. (8 points)

Clear

Store
Z

Z = 0;
Load
X

while(X>0) {

Top:
Skipcond 10

Z=Y+Z;

Jump
Out

X--;

Load
Y

}

Add
Z

Store
Z

Or, this does Z = X * Y;

Load
X

Subt
#1

Store
X

Jump
Top

Out:
…

4) A computer has a 5 stage fetch-execute cycle where branches are computed in stage 3. It is running a program of 10,000 instructions. The program has 500 conditional branches, each of which skip 5 instructions. Assume tp = 1. (8 points)

a. How many cycles does it take the unpipelined machine to execute the program if no branches are taken?
5 * 10,000 = 50,000 cycles
b. How many cycles does it take the pipelined machine to execute the program if no branches are taken?
5 + 10,000 – 1 = 10,004
c. How many cycles does it take the unpipelined machine to execute the program if all branches are taken?
5 * (10,000 – 500 * 5) = 5 * 7,500 = 37,500
d. How many cycles does it take the pipelined machine to execute the program if all branches are taken?
5 + (10,000 – 500 * 5) – 1 + 500 * 2 = 8,504
5) Assume int x[]={0, 2, 4, 6, 8}; and int *y=x; Answer these two questions. (6 points)

a. Does y--; yield a syntax error, run-time error, both or neither? Briefly explain.
Neither because we are just changing the pointer, not dereferencing it. It may be

a logical error but that depends on where it is now pointing.
b. What happens to x with the instruction *x=*(x+1) * *(x+2) * *(x+3)?
This instruction places into *x (x[0]) the value of x[1]*x[2]*x[3] = 2 * 4 * 6 = 48, so x[0] becomes 48.
6) List 3 aspects of a CISC instruction set (e.g., Intel x86) that would not support pipelining well. (6 points)
· Variable length instructions cause unpredictable instruction fetches

· Non load-store means that ALU operations can include memory accesses causing potential structural hazards

· Instructions might take more than 1 cycle to execute causing structural hazards

· Complicated addressing modes might cause structural hazards

7) Rewrite the following C code in MARIE. You may use either immediate addressing or assume that variables exist that store the value of their name (e.g., ten stores 10). (9 points)
if (x > y && y > z)

if(x != 0) x++;

else y++;

else z++;

Load

X

Subt

Y

Skipcond
10

Jump

Else2

Load

Y

Subt

Z

Skipcond
00

Jump

Else2

Load

X

Skipcond
01

Jump

If2

Load

Y

Add

#1

Store

Y

Jump

Out

If2:
Load

X

Add

#1

Store

X

Jump

Out

Else2:
Load

Z

Add

#1

Store

Z

Out:
…

8) We want to change MARIE from having a single data register, the AC, to having 4 data registers. Now, our instructions require specifying both an operand address and a register, as in ADD R1, X. Aside from adding these registers, what other changes will MARIE have to undergo to accommodate the added registers? (6 points)

Since we now require the register specifier in the instruction, and there are 4 registers, we would need to use 2 bits of our 16 bit instruction format. The new format would be

opcode register address

We could either increase our instructions to be 18 bits or decrease our addresses to be 10 bits. Both will have consequences. If we change to 18 bit instructions, then our word size becomes 18 bits so we need 18 bit storage in memory, 18 bit IR, AC and MBR, and an 18-bit wide data bus. If we reduce our address sizes to 10 bits, we can only address 1K, so we have to reduce memory size. We would also reduce to 10 bits the size of the PC, MAR and make the address bus 10-bits wide instead of 12.

9) We want a function which receives 4 parameters, two characters and two integers. Change the two character parameters by adding the first integer to the ASCII value of the first character and subtracting the second integer from the second character. The function itself should return 1 if the first character is now greater than the second, 0 if they are equal and -1 if the first character is now less than the second. NOTE: to alter the character, you have to cast the result of the addition or subtraction as a char, for instance, c1=(char)c1+x1. Write the function and the function call both. (8 points)

int question9(char *c1, char *c2, int i1, int i2)

{

 *c1=(char)(*c1+i1);

 *c2=(char)(*c2-i2);

 if(*c1>*c2) return 1;

 else if(*c1==*c2) return 0;

 else return -1;

}
void main() {

char a, b; int c, d, x;

x = question9(&a, &b, c, d);

10) Assume that we have the following values in the given memory locations:

Location

Value
100

200

200

400

300

600

400

100
Also assume that the base register R1 stores 200 and is always implicitly used for the indexed addressing mode. What datum is loaded into the accumulator if the instruction is LOAD 100 for each of the following addressing modes? (8 points)

a. Immediate

b. Direct

100

200
c. Indirect

d. Base (Indexed)

400

600
11) Convert the following loop so that it uses a pointer in place of the loop variable i. Use pointer referencing for a and b only in your new code. (6 points)

for(0;i<n;i++)

a[i]=b[i]+1;

for(ip1=a,ip2=b;ip2<b+n;ip1++,ip2++)

*ip1=*ip2+1;

12) We want a new MARIE instruction. Assume we have a register called SP, the Stack Pointer. The instruction is Push X. This instruction will retrieve X from memory and store X to the top of the stack as pointed to by the SP. Thus, this instruction requires both a memory read (to get X) and a memory write (to push X). Implement the full RTN including the instruction fetch and any operand fetch. Don’t forget, as with any stack, to adjust the top of the stack when done. Assume the stack grows downward in memory (increment SP). (6 points).

Fetch:

MAR (PC

MBR (M[MAR]

IR (MBR

PC (PC + 1

Decode:
decode IR[15..12]

MAR (IR[11..0]

Operand fetch: MBR (M[MAR]

Execute:
MAR (SP

M[MAR] (MBR

SP (SP + 1

// assume we can directly incr/decr SP

13) A computer has 412 instructions all of which are 0 operand, 1 operand or 2 operand instructions. Instructions have the format: op code, number of operands, mode of 1st operand (if any), 1st operand specifier (if any), mode of 2nd operand (if any), 2nd operand specifier (if any). There are 25 different addressing modes. The machine uses a fixed length 36 bit instruction format. Answer the following. (9 points)

a. One mode has 2 registers as operands. How many registers should we equip the computer with?
Op code bits: log 412 = 9

Num operands bits: log 3 = 2

Addressing mode bits: log 25 = 5
For this mode, we have: op code, num operands, mode 1, reg 1, mode 2, reg 2

36 – 9 – 2 – 5 – 5 = 15, so we have 15 bits for reg1 & reg2, or 7 bits apiece, we can

accommodate up to 128 registers

b. One mode has a register as a destination, and a register plus an immediate datum as a source. Assuming the computer has 16 registers and the immediate datum is in two’s complement, what is the largest immediate datum possible?
With 16 registers, we have 4 bits per register. This mode uses 2 operands, so 2 addressing modes, 2 registers (4 bits each) and the last part is the immediate datum. 36 – 9 – 2 – 5 – 4 – 5 – 4 leaves us with 7 bits for the immediate datum. In two’s complement, we have a range from -26 to +26 – 1, so our largest immediate datum is 63.
c. One mode has a single operand, a memory address. How large should we make addressable memory to accommodate this mode?
Here we have 36 – 9 – 2 – 5 leaving us with 20 bits for the memory address, so our largest addressable memory address is 220 or 1M.
