
Fall 2006
Chris Christensen
MAT/CSC 483

Introduction to RSA and to Authentication

The most famous of the public key cryptosystem is RSA which is named
after its three developers Ron Rivest, Adi Shamir, and Leonard Adleman.
At the time of the algorithm's development (1977), the three were
researchers at the MIT Laboratory for Computer Science. Their algorithm
was first announced in Martin Gardner's "Mathematical Games" column in
the August, 1977, Scientific American. Their formal paper "A method for
obtaining digital signatures and public-key cryptosystems" was published in
1978 in the Communications of the Association for Computing Machinery.

A Bit of Mathematics

Recall that public key cryptosystems are designed around mathematical
processes that are (relatively) easy to do but for which the inverse is very
difficult to do without additional information (the private key).

For RSA, the (relatively) easy part is multiplying pairs of large primes. The
hard part is factoring large integers.

The basic mathematics goes back to the French mathematician Pierre de
Fermat (1601 – 1665). A result known as Fermat's Little Theorem states
that for any prime number r and any integer a not divisible by r,

. 1 1modra r− ≡

Actually, what is directly used is a corollary of a more general result due to
the Swiss mathematician Leonard Euler (1707 –1783). In the form in which
it is used in the RSA cryptosystem, this corollary states that if r and s are
prime numbers and a is an integer that has no common divisors with either r
or s, then . (1)(1) 1modr sa r− − ≡ s

Here is the RSA cryptosystem.

 1

Encryption

The receiver, say Josh, needs to construct two large prime numbers denoted
r and s. The product of r and s is denoted n rs= . In practice, the prime
numbers r and s are each about the same number of digits long and are
selected so that their product n is 200 or more digits long. For our examples,
we will use small primes, say 53r = , 61s = , and 3233n rs= = . Josh then
selects an integer e that has a multiplicative inverse modulo .
This is called the encryption exponent. For our example, we will choose

which has a multiplicative inverse modulo

(1)(1)r s− −

37e =

(1)(1) (53 1)(61 1) 52 60 3120r s− − = − − = × = .

Josh then constructs (using the Euclidean algorithm) the multiplicative
inverse of e modulo (; that number is the decryption exponent
and is denoted d. For our example,

1)(1)r s− −
253d = .

Josh's public key consists of two numbers – n and e. These two numbers are
available to anyone who might want to send an encrypted message to Josh.
Josh keeps the decryption exponent d secret; it is his private key. The
private key is used by Josh to decrypt any messages sent to him that have
been encrypted with his public key.

For someone to cryptanalyze a message sent to Josh using his public key,
they would have to be able to construct the private key d which is the inverse
of e modulo (. This can be easily done if r and s are known, but
to get r and s, the cryptanalyst would need to be able to factor the other half
of Josh's public key n. That is the problem. There is no efficient way to find
r and s even if n is known (provided that n is large and r and s are
approximately the same size).

1)(1)r s− −

Say, Brad wants to send the message Midway to Josh using Josh's public
key. First, the message must be converted to a string of numbers. In
practice, ASCII (American Standard Code of Information Interchange)
numbers are usually used; we will use our usual a = 01, b = 02, …, z = 26.
So, Midway would be converted to the string 130904230125. The string
is broken into blocks each of which is small than the modulus -- 3233 in our
case. Four-digit blocks will work.

 2

1309 0423 0125

Ciphertext is obtained by raising each plaintext block to the exponent e
modulo n.

modep n C=

371309 mod3233 3027=

370423 mod3233 0635=

370125 mod3233 1699=

The message that Brad transmits to Josh is

3027 0635 1699

Decryption

How does Josh decrypt the message from Brad?

Decryption depends on Euler's corollary to Fermat's Little Theorem. Recall
that Euler's corollary says that (1)(1) 1modr sa r− − s≡ . Because , this says
that . Now e and d are inverses modulo (; i.e.,

. Another way of saying this is that ed is 1 plus a
multiple of (; i.e.,

n rs=
(1)(1) 1modr sa − − ≡ n

−
1)(1)r s− −

1mod(1)(1)ed r s≡ −
1)(1)r s− − 1 (1)(1)ed k r s= + − − .

Ciphertext is . When Josh receives the ciphertext blocks, he
raises each of them to the power d, his decryption exponent.

modeC p n≡

()d e dC p p≡ ≡ ed

1 (1)(1) 1 (1)(1)k r s k r sp p p+ − − − −≡ ≡

() ()(1)(1) 1 mo
k kr sp p p p n− −≡ ≡ ≡ d

which is back to plaintext.

 3

Here is the decryption for our example.

moddC n p=

2533027 mod3233 1309=

2530635 mod3233 0423=

2531699 mod3233 0125=

So, the message decrypts to 1309 0423 0125 which in plaintext is
Midway.

Authentication

Public key encryption systems solve the problems of key distribution (the
sending key is “published” and is available to anyone who wants to use it)
and of key security (only the private key needs to be kept secure, and the
receiver is the only person with that key), and public key encryption systems
like RSA are secure, but public key encryption systems create a new
problem – authentication. How does the receiver know that a message really
came from the person who “signed” it?

How, for example, does Josh know that the message above came from Brad?
Brad could “sign” the message; but, because Josh's encryption key is public,
anyone could create a message, sign Brad's name, encrypt it with Josh's
public key, and send it to Josh. How does Josh know that it really came
from Brad and not an imposter?

For classical ciphers, after a key has been exchanged by two people, a
reasonable expectation by one of those people is that if a ciphertext message
is received and the message decrypts to plaintext using the key that was
exchanged, then the message came from the person with whom the key had
been exchanged. (Sure, there are exceptions like when a key is stolen,
torture is used to get the key or to force the sending of a message, etc.; but,
in general, correct decryption implies authentication.)

 4

However, this is not the case for public key ciphers. Because everyone has
access to the public key, anyone can send a message and “sign” any name
that they want. So, for public key ciphers authentication is a problem.

We won’t go into the details of implementing ideas for authenticating
messages; we will only discuss in general how authentication might be
achieved in a public key situation.

Suppose that Alice is sending a message to Bob.

Security is provided by Alice using Bob’s public key.

()B publicE k , pA: :Bp C⎯⎯⎯⎯⎯→

But, are we sure that the message came from Alice? Or might is be that
someone else sent the message and “signed” Alice’s name to it? “Usual”
public key encryption (Alice using Bob’s public key to encipher) provides
security but not authentication.

Alice can authenticate a message by sending it after encryption with her
private key. Alice is the only person who knows her private key.

()A privateE k , pA: :Bp C⎯⎯⎯⎯⎯→

Bob knows Alice’s public key, Alice’s public key is the inverse of her
private key, and Alice is the only person who knows her private key. So, if
the message decrypts using Alice’s public key, then Bob can be sure that the
message came from Alice. (Sure, some exceptions, but in general.) Of
course, this scheme provides no security because everyone has access to
Alice’s public key, and, therefore, everyone can decrypt the message.

 5

“Reverse” public key encryption (Alice using her own private key to
encipher) provides authentication but not security.

Of course, the message could be encrypted twice – once for security (using
Bob’s public key) and once for authentication (using Alice’s public key);
e.g.,

() ()B public A privateE k , p E k , pA: :Bp C⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

The problem here is time. Public key algorithms are not fast; encrypting
twice would make encryption an unreasonably long process for many
messages.

There are various ways to implement this sort of encryption – security and
authentication – but they often are the equivalent of encrypting twice.

A more efficient method is to use a cryptographic hash function.

A cryptographic hash function is a message digest; in some sense, the
message is condensed. A very trivial hash function is:

()
1 If the message contains an odd number of characters

h m
0 If the message contains an even number of characters
⎧

= ⎨
⎩

Another, used with German Enigma messages (not as a hash function but
rather as an error check) was to append to the message the number of
characters in the message. h(m) = the number of characters in the message.

Well, each of these tells us a little about the message but not much. A better
digest is desirable.

But, in addition to being a digest of the message, a cryptographic hash
function (for security reasons) should have some other properties:

 6

It should be one-way. Knowing h(m) it should not be feasible to
determine m.

It should be strongly collision free. It should be very unlikely that

 if . Of course, the number of messages is
much larger than the number of digests; so, collisions will occur but
collisions should be unlikely.

() (1 2h m =h m) 21m m≠

There are two widely used families of cryptographic hash functions – the
MD family (MD = message digest) and the SHA family (SHA = secure hash
algorithm). Rivest and RSA laboratories developed MD4 and now MD5.
The original MD was never published; MD2 was the first of the family to
appear, and it was followed by MD4. The NSA developed SHA-1 and
SHA-2. Around February 2005, problems with SHA-1 became public.

Essentially hash functions allows authentication to occur without double
encryption of the entire message.

Alice and Bob must agree on a hash function. Then Alice can (for security)
send her message using Bob’s public key. Also, she creates a hash of the
plaintext and (for authentication) sends it using her private key. Using his
private key, Bob decrypts the ciphertext enciphered with his public key and
creates a hash of the plaintext using the hash function that he and Alice have
agreed to use. Bob also decrypts the ciphertext of the hash function using
Alice’s public key. The two hashes should be the same. If they are, Bob can
assume that the message came from Alice.

 7

More about the Scientific American Column

In his 1977 column, Martin Gardner posed a $100 ciphertext challenge.

9686 9613 7546 2206 1477 1409 2225 4355
8829 0575 9991 1245 7431 9874 6951 2093
0816 2982 2514 5708 3569 3147 6622 8839
8962 8013 3919 9055 1829 9451 5781 5254

The ciphertext was generated by the MIT team from a plaintext (English)
message using e = 9007 and n =

114,381,625,757,888,867,669,235,779,976,146,612,010,218,296,721,
242,362,562,561,842,935,706,935,245,733,897,830,597,123,563,958,
705,058,989,075,147,599,290,026,879,543,541.

On April 26, 1994, a team of about 600 volunteers announced that they had
completed the factorization of n. The two factors (r and s) are:

3,490,529,510,847,650,949,147,849,619,903,898,133,417,764,638,
493,387,843,990,820,577

and

32,769,132,993,266,709,549,961,988,190,834,461,413,177,642,967,
992,942,539,798,288,533

Hence the team could determine the decryption exponent and decipher the
message. (The message is: the magic words are squeamish ossifage.)

As mathematicians do more research about factoring, the algorithms are
improving. It takes longer and longer keys (n has 300 or more digits for the
most secure transmissions) to guarantee security.

In 1994, a factoring algorithm for quantum computers Shor’s algorithm was
developed. No quantum computer yet exists, but if a quantum computer can
be built, all RSA-encrypted messages are readable.

 8

Exercises

Josh's public key: n = 3233 and e = 37.
Josh's private key: d = 253.

Brad's public key: n = 2773 and e = 17.
Brad's private key: d = 157.

1. Encrypt the message Purple using Josh's public key.

2. Encrypt the message Fermat using Brad's public key.

3. Decrypt (using Brad's private key) the following ciphertext message
which was encrypted using Brad's public key:

 1643 0639 2556

4 RSA depends on long keys for security. Consider the case of a small key.
Say, Beth has public key n = 2701 and e = 1037. Josh sends her the
following message: 0642 2584 1992. Find the decryption exponent d
and cryptanalyze the message.

5 Factor the following ns into prime factors:

5a n = 91.
5b n = 1850.
5c n = 105400.
5d n = 1678.
5e n = 736163.

Discuss why it is important for the security of the RSA algorithm that n be
the product of two large primes of nearly equal size.

 9

	Introduction to RSA and to Authentication
	A Bit of Mathematics
	Encryption
	Decryption
	Authentication

