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Introduction to RSA and to Authentication 
 
The most famous of the public key cryptosystem is RSA which is named 
after its three developers Ron Rivest, Adi Shamir, and Leonard Adleman.  
At the time of the algorithm's development (1977), the three were 
researchers at the MIT Laboratory for Computer Science.  Their algorithm 
was first announced in Martin Gardner's "Mathematical Games" column in 
the August, 1977, Scientific American.  Their formal paper "A method for 
obtaining digital signatures and public-key cryptosystems" was published in 
1978 in the Communications of the Association for Computing Machinery.   
 
 

A Bit of Mathematics 
 
Recall that public key cryptosystems are designed around mathematical 
processes that are (relatively) easy to do but for which the inverse is very 
difficult to do without additional information (the private key). 
 
For RSA, the (relatively) easy part is multiplying pairs of large primes.  The 
hard part is factoring large integers. 
 
The basic mathematics goes back to the French mathematician Pierre de 
Fermat (1601 – 1665).  A result known as Fermat's Little Theorem states 
that for any prime number r and any integer a not divisible by r, 

. 1 1modra r− ≡
 
Actually, what is directly used is a corollary of a more general result due to 
the Swiss mathematician Leonard Euler (1707 –1783).  In the form in which 
it is used in the RSA cryptosystem, this corollary states that if r and s are 
prime numbers and a is an integer that has no common divisors with either r 
or s, then . ( 1)( 1) 1modr sa r− − ≡ s
 
Here is the RSA cryptosystem. 
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Encryption 
 
The receiver, say Josh, needs to construct two large prime numbers denoted 
r and s.  The product of r and s is denoted n rs= .  In practice, the prime 
numbers r and s are each about the same number of digits long and are 
selected so that their product n is 200 or more digits long.  For our examples, 
we will use small primes, say 53r = , 61s = , and 3233n rs= = .  Josh then 
selects an integer e that has a multiplicative inverse modulo .  
This is called the encryption exponent.  For our example, we will choose 

which has a multiplicative inverse modulo  

( 1)( 1)r s− −

37e =
 

( 1)( 1) (53 1)(61 1) 52 60 3120r s− − = − − = × = . 
 
Josh then constructs (using the Euclidean algorithm) the multiplicative 
inverse of e modulo ( ; that number is the decryption exponent 
and is denoted d.  For our example,

1)( 1)r s− −
253d = . 

 
Josh's public key consists of two numbers – n and e.  These two numbers are 
available to anyone who might want to send an encrypted message to Josh.  
Josh keeps the decryption exponent d secret; it is his private key.  The 
private key is used by Josh to decrypt any messages sent to him that have 
been encrypted with his public key. 
 
For someone to cryptanalyze a message sent to Josh using his public key, 
they would have to be able to construct the private key d which is the inverse 
of e modulo ( .  This can be easily done if r and s are known, but 
to get r and s, the cryptanalyst would need to be able to factor the other half 
of Josh's public key n.  That is the problem.  There is no efficient way to find 
r and s even if n is known (provided that n is large and r and s are 
approximately the same size). 

1)( 1)r s− −

 
Say, Brad wants to send the message Midway to Josh using Josh's public 
key.  First, the message must be converted to a string of numbers.  In 
practice, ASCII (American Standard Code of Information Interchange) 
numbers are usually used; we will use our usual a = 01, b = 02, …, z = 26.  
So, Midway would be converted to the string 130904230125.  The string 
is broken into blocks each of which is small than the modulus -- 3233 in our 
case.  Four-digit blocks will work. 
 

 2



1309 0423 0125 
 
Ciphertext is obtained by raising each plaintext block to the exponent e 
modulo n. 

modep n C=  
 

371309 mod3233 3027=  
 

370423 mod3233 0635=  
 

370125 mod3233 1699=  
 
The message that Brad transmits to Josh is 
 

3027   0635   1699 
 
 

Decryption 
 
How does Josh decrypt the message from Brad? 
 
Decryption depends on Euler's corollary to Fermat's Little Theorem.  Recall 
that Euler's corollary says that ( 1)( 1) 1modr sa r− − s≡ .  Because , this says 
that .  Now e and d are inverses modulo ( ; i.e., 

.  Another way of saying this is that ed is 1 plus a 
multiple of ( ; i.e., 

n rs=
( 1)( 1) 1modr sa − − ≡ n

−
1)( 1)r s− −

1mod( 1)( 1)ed r s≡ −
1)( 1)r s− − 1 ( 1)( 1)ed k r s= + − − .   

 
Ciphertext is .  When Josh receives the ciphertext blocks, he 
raises each of them to the power d, his decryption exponent.   

modeC p n≡

 
( )d e dC p p≡ ≡ ed  

 
1 ( 1)( 1) 1 ( 1)( 1)k r s k r sp p p+ − − − −≡ ≡  

 

( ) ( )( 1)( 1) 1 mo
k kr sp p p p n− −≡ ≡ ≡ d  

 
which is back to plaintext. 
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Here is the decryption for our example. 
 

moddC n p=  
 

2533027 mod3233 1309=  
 

2530635 mod3233 0423=  
 

2531699 mod3233 0125=  
 
So, the message decrypts to 1309 0423 0125 which in plaintext is 
Midway. 
 
 

Authentication 
 
Public key encryption systems solve the problems of key distribution (the 
sending key is “published” and is available to anyone who wants to use it) 
and of key security (only the private key needs to be kept secure, and the 
receiver is the only person with that key), and public key encryption systems 
like RSA are secure, but public key encryption systems create a new 
problem – authentication.  How does the receiver know that a message really 
came from the person who “signed” it? 
 
How, for example, does Josh know that the message above came from Brad?  
Brad could “sign” the message; but, because Josh's encryption key is public, 
anyone could create a message, sign Brad's name, encrypt it with Josh's 
public key, and send it to Josh.  How does Josh know that it really came 
from Brad and not an imposter? 
 
For classical ciphers, after a key has been exchanged by two people, a 
reasonable expectation by one of those people is that if a ciphertext message 
is received and the message decrypts to plaintext using the key that was 
exchanged, then the message came from the person with whom the key had 
been exchanged.  (Sure, there are exceptions like when a key is stolen, 
torture is used to get the key or to force the sending of a message, etc.; but, 
in general, correct decryption implies authentication.) 
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However, this is not the case for public key ciphers.  Because everyone has 
access to the public key, anyone can send a message and “sign” any name 
that they want.  So, for public key ciphers authentication is a problem. 
 
We won’t go into the details of implementing ideas for authenticating 
messages; we will only discuss in general how authentication might be 
achieved in a public key situation. 
 
Suppose that Alice is sending a message to Bob. 
 
Security is provided by Alice using Bob’s public key. 
 

( )B publicE k , pA: :Bp C⎯⎯⎯⎯⎯→  

 
But, are we sure that the message came from Alice?  Or might is be that 
someone else sent the message and “signed” Alice’s name to it?  “Usual” 
public key encryption (Alice using Bob’s public key to encipher) provides 
security but not authentication. 
 
Alice can authenticate a message by sending it after encryption with her 
private key.  Alice is the only person who knows her private key. 
 

( )A privateE k , pA: :Bp C⎯⎯⎯⎯⎯→  

 
Bob knows Alice’s public key, Alice’s public key is the inverse of her 
private key, and Alice is the only person who knows her private key.  So, if 
the message decrypts using Alice’s public key, then Bob can be sure that the 
message came from Alice.  (Sure, some exceptions, but in general.)  Of 
course, this scheme provides no security because everyone has access to 
Alice’s public key, and, therefore, everyone can decrypt the message.  
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“Reverse” public key encryption (Alice using her own private key to 
encipher) provides authentication but not security. 
 
Of course, the message could be encrypted twice – once for security (using 
Bob’s public key) and once for authentication (using Alice’s public key); 
e.g.,  
 

( ) ( )B public A privateE k , p E k , pA: :Bp C⎯⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→  

 
The problem here is time.  Public key algorithms are not fast; encrypting 
twice would make encryption an unreasonably long process for many 
messages. 
 
There are various ways to implement this sort of encryption – security and 
authentication – but they often are the equivalent of encrypting twice. 
 
A more efficient method is to use a cryptographic hash function. 
 
A cryptographic hash function is a message digest; in some sense, the 
message is condensed.  A very trivial hash function is: 
 

( )
1 If the message contains an odd number of characters

h m
0 If the message contains an even number of characters
⎧

= ⎨
⎩

 

 
Another, used with German Enigma messages (not as a hash function but 
rather as an error check) was to append to the message the number of 
characters in the message.  h(m) = the number of characters in the message. 
 
Well, each of these tells us a little about the message but not much.  A better 
digest is desirable. 
 
But, in addition to being a digest of the message, a cryptographic hash 
function (for security reasons) should have some other properties: 
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It should be one-way.  Knowing h(m) it should not be feasible to 
determine m. 

 
It should be strongly collision free.  It should be very unlikely that 

 if .  Of course, the number of messages is 
much larger than the number of digests; so, collisions will occur but 
collisions should be unlikely. 

( ) (1 2h m =h m ) 21m m≠

 
There are two widely used families of cryptographic hash functions – the 
MD family (MD = message digest) and the SHA family (SHA = secure hash 
algorithm).  Rivest and RSA laboratories developed MD4 and now MD5.  
The original MD was never published; MD2 was the first of the family to 
appear, and it was followed by MD4.  The NSA developed SHA-1 and 
SHA-2.  Around February 2005, problems with SHA-1 became public. 
 
Essentially hash functions allows authentication to occur without double 
encryption of the entire message.   
 
Alice and Bob must agree on a hash function.  Then Alice can (for security) 
send her message using Bob’s public key.  Also, she creates a hash of the 
plaintext and (for authentication) sends it using her private key.  Using his 
private key, Bob decrypts the ciphertext enciphered with his public key and 
creates a hash of the plaintext using the hash function that he and Alice have 
agreed to use.  Bob also decrypts the ciphertext of the hash function using 
Alice’s public key.  The two hashes should be the same.  If they are, Bob can 
assume that the message came from Alice. 
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More about the Scientific American Column 

 
In his 1977 column, Martin Gardner posed a $100 ciphertext challenge.   
 

9686   9613   7546   2206   1477   1409   2225   4355   
8829   0575   9991   1245   7431   9874   6951   2093   
0816   2982   2514   5708   3569   3147   6622   8839   
8962   8013   3919   9055   1829   9451   5781   5254 

 
The ciphertext was generated by the MIT team from a plaintext (English) 
message using e = 9007 and n =  
 

114,381,625,757,888,867,669,235,779,976,146,612,010,218,296,721,
242,362,562,561,842,935,706,935,245,733,897,830,597,123,563,958,
705,058,989,075,147,599,290,026,879,543,541. 

 
On April 26, 1994, a team of about 600 volunteers announced that they had 
completed the factorization of n.  The two factors (r and s) are: 
 

3,490,529,510,847,650,949,147,849,619,903,898,133,417,764,638, 
493,387,843,990,820,577 

 
and 
 

32,769,132,993,266,709,549,961,988,190,834,461,413,177,642,967, 
992,942,539,798,288,533 

 
Hence the team could determine the decryption exponent and decipher the 
message.  (The message is: the magic words are squeamish ossifage.) 
 
As mathematicians do more research about factoring, the algorithms are 
improving.  It takes longer and longer keys (n has 300 or more digits for the 
most secure transmissions) to guarantee security. 
 
In 1994, a factoring algorithm for quantum computers Shor’s algorithm was 
developed.  No quantum computer yet exists, but if a quantum computer can 
be built, all RSA-encrypted messages are readable. 
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Exercises 
 
Josh's public key: n = 3233 and e = 37. 
Josh's private key: d = 253. 
 
Brad's public key: n = 2773 and e = 17. 
Brad's private key: d = 157. 
 
 
1. Encrypt the message Purple using Josh's public key. 
 
 
2. Encrypt the message Fermat using Brad's public key. 
 
 
3. Decrypt (using Brad's private key) the following ciphertext message 
which was encrypted using Brad's public key: 
 
 1643   0639   2556 
 
 
4 RSA depends on long keys for security.  Consider the case of a small key.  
Say, Beth has public key n = 2701 and e = 1037.  Josh sends her the 
following message: 0642 2584 1992.  Find the decryption exponent d 
and cryptanalyze the message. 
 
 
5 Factor the following ns into prime factors: 
 
5a n = 91. 
5b n = 1850. 
5c n = 105400. 
5d n = 1678. 
5e n = 736163. 
 
Discuss why it is important for the security of the RSA algorithm that n be 
the product of two large primes of nearly equal size. 
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