
  

 

Abstract—Association rule mining techniques are used to 
search attribute-value pairs that occur frequently together in 
a data set.  Ordinal association rules are a particular type of 
association rules that describe orderings between attributes 
that commonly occur over a data set [9].  Although ordinal 
association rules are defined between any number of the 
attributes, only discovery algorithms of binary ordinal 
association rules (i.e., rules between two attributes) exist. 

In this paper, we introduce the DOAR algorithm that 
efficiently finds all ordinal association rules of interest to the 
user, of any length, which hold over a data set.  We present a 
theoretical validation of the algorithm and experimental 
results obtained by applying this algorithm on a real data 
set. 

I. INTRODUCTION 
Association rule mining aims to find interesting 

associations or correlations that exist between items in 
large data sets.  Association rule discovery was first 
introduced in the context of market basket analysis, where 
customer buying habits or patterns are to be uncovered 
[2].  Since then, many research efforts in the area of 
association rule mining have been made mainly in two 
directions:  
• To improve old algorithms or develop new ones in 

order to ensure scalability with respect to data size 
[10] [6].  

• To extend the Boolean association rules concept to 
adapt it to new applications.  Han and Kamber [5] 
present an extensive overview of the types of 
association rules that can be discovered in data 
(e.g., Boolean vs. quantitative, single vs. multi-
dimensional, single vs. multi-level, constrained-
based rules, etc.) and of their utility and discovery 
methods. 
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Within the second direction of research, a new kind of 
association rules, ordinal association rules (a.k.a. ordinal 
rules), was introduced in [9].  Given a set of records, 
described by a set of attributes, the ordinal association 
rules identify ordinal relationships between the attribute 
values that hold for a certain percentage of the records.  
There are several existing and potential applications for 
ordinal association rules, such as automatic detection of 
errors in data sets [8]. 

Although ordinal association rules are defined between 
any number of attributes, discovery algorithms exist only 
for binary ordinal association rules (i.e., rules between 
two attributes) [9]. 

In this paper, we introduce an algorithm that efficiently 
finds all ordinal association rules of any length (i.e., 
between multiple attributes) that hold over a data set, and 
which are of interest to the user. 

The paper is structured as follows.  Section II presents 
the formal definition of the ordinal association rules.  
Section III introduces and explains the DOAR algorithm 
for uncovering all the interesting ordinal rules in a data 
set.  Theoretical validation of the algorithm is given in 
Section IV.  Section V presents a case study on a real data 
set that shows the algorithm’s capacity in reducing the 
search space for ordinal rules.  Conclusions and future 
work are outlined in Section VI. 

II. ORDINAL ASSOCIATION RULES 
Datasets that contain several attributes with similar or 

comparable domains of values are frequent in data 
mining.  The order relationships between record attributes 
that hold for a certain percentage of records represent an 
extension of association rules and they are called ordinal 
association rules [9]. 

 
Definition 1.  [9] Let R = {r1, r2 ,… , rn} be a set of 

records, where each record is a set of m attributes, (a1,…, 
am).  We denote by Φ(rj, ai) the value of attribute ai in the 
record rj.  Each attribute ai takes values from a domain D, 
which also contains ε (empty, null).  The following 
relations (partial orderings) are defined over domain D: 
less or equal (≤), equal (=), greater or equal (≥), all having 
the usual meaning.  An ordinal association rule is an 
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expression of the form 
)(),,,( 11 2121 ll lKK iiiiii aaaaaa −⇒ µµ , where  

},,,{},,,{ 2121 miii aaaAaaa KK
l

=⊆   

kjkjaa
kj ii ≠=∀≠ ,..1,, l , and 

},,{ ≥=≤=∈Miµ . If: 
• 

l
K iii aaa ,,,

21
occur together (are non-empty) in 

s% of the n records then we call s the support of 
the rule; 

and 
• we denote by R’ ⊆ R the set of records where 

l
K iii aaa ,,,

21
 occur together and 

),(),(),( 11 21 llK ijijij ararar φµφµφ −  is true for 

each record rj in R’, then c = | R’ | / | R | is called 
the confidence of the rule. 

 
The users usually need to uncover interesting ordinal 

association rules that hold in a data set; they are interested 
in rules which hold between a minimum number of 
records, that is rules with support at least min_s and 
confidence at least min_c (min_s  and min_c are user-
provided thresholds). 

 
Definition 2.  We call an ordinal association rule in R 

interesting if its support s is greater than or equal to a 
user-specified minimum support, min_s and its confidence 
c is greater than or equal to a user-specified minimum 
confidence, min_c. 

 
We introduce a new concept, necessary for the 

definition of our novel discovery algorithm. 
 
Definition 3.  The length, ℓ, of an ordinal association 

rule )(),,,( 11 2121 ll lKK iiiiii aaaaaa −⇒ µµ  is the 

number of attributes in the rule. 
 
Previous work [9] proposed an identification process 

for the binary ordinal association rules (i.e., rules having 
the length 2) that have confidence greater than a given 
threshold. 

III. DISCOVERY OF ORDINAL ASSOCIATION RULES - 
DOAR 

We introduce a new algorithm, called DOAR 
(Discovery of Ordinal Association Rules), to discover all 
the interesting (w.r.t. the user-specified thresholds min_s 
and min_c) ordinal rules of any length in a data set.  Our 
algorithm is inspired by the Apriori algorithm [3] for 
determining Boolean association rules in a transactional 
data set.  Namely, rules identification is an iterative 

process that consists in length-level generation of 
candidate rules, followed by the verification of the 
candidates for minimum support and confidence 
compliance. 

The DOAR algorithm performs multiple passes over 
the data set R.  In the first pass, it calculates the support 
and confidence of the 2-length rules and determines 
which of them are interesting, i.e., verify minimum 
support and confidence requirement.  In every subsequent 
pass over the data, we start with a seed set of interesting 
rules, found in the previous pass.  We use this set to 
generate new possible interesting rules, called candidate 
rules, and we compute the actual support and confidence 
of these candidates during the scan of the data.  At the end 
of this step, we keep the rules that are deemed interesting, 
which will be used in the next iteration.  The process 
stops when no new interesting rules were found in the 
latest iteration. 

The remainder of this section explains in details and 
formalizes the main steps of the algorithm, discusses the 
complexity of the algorithm, and provides a usage 
example. 

A. The DOAR Algorithm 
DOAR makes use of the following sets: 
• Ck is the set of k-length candidate rules; a k-length 

candidate rule is a sequence of partial orderings 
between k attributes, 2 ≤ k ≤ m; 

• Lk is the set of the k-length interesting (i.e., support 
and confidence greater than or equal with min_s 
and min_c, respectively) ordinal rules found by 
DOAR. It will be proved that Lk is equal to the set 
of all k-length interesting ordinal association rules 
existing in data, 2 ≤ k ≤ m. 

The DOAR algorithm starts by generating C2, 
computing the support and confidence for each candidate 
rule in C2, and determining L2.  For the set M = {≤, =, ≥} 
of partial ordering relations between attributes, the binary 
candidate rules (C2) are generated as specified in line 1 of 
the algorithm (see Fig. 1).  The L2 set is determined by a 
scan of the data and is the starting point of the subsequent 
steps in the iterative process employed by DOAR. 

Every iteration consists of two phases: 
• First, DOAR generates the k-length candidate rules 

set, Ck (k≥3), using the set of (k-1)-length 
interesting rules, Lk-1.  The candidate generation 
process is the key element of our algorithm. 

• Then, a scan of the R data set is performed, while 
computing the support and the confidence of every 
candidate rule in Ck.  The candidates in Ck that 
have minimum support and satisfy the confidence 
requirements are interesting ordinal association 



  

rules and therefore are included in Lk. 
At every iteration, candidates are generated by the 

GenCandidates function (see Fig. 1).  The GenCandidates 
function has as argument the Lk-1 set of (k-1)-length 
interesting rules and returns Ck , a superset of the set of 
the interesting k-length rules.  The elements of Ck are 
sequences of partial orderings between k attributes, called 
candidate k-length rules.  GenCandidates produces the 
candidates in Ck in the following manner.  Each 
unordered pair of rules (rule1, rule2), rule1, rule2 ∈ Lk-1, 
which satisfies one of the formats below, is merged into a 
candidate rule c.  To simplify the notation in these 
formulas, we only write from each rule the partial 
orderings sequence (i.e., the right hand side of the rule). 
We mention that Aa,,a,, a aa

2k21 iii
21 ∈

−
K, are 

attributes, M,,,  k
21 ∈−31, µµµµ K  are relations and 

1−µ  denotes the converse of the relation M∈µ . 
 

)( 11
1 2k21 i3ki1i aµaµa

−−≡ Kµarule  and 

),( 22
2 arule µ

2k21 i3ki1i aµaµa
−−≡ K     (1) 

then )( 2211 aac µµ
2k21 i3ki1i aµaµa

−−≡ K , 

or 

)( 11
1 arule µ

2k21 i3ki1i aµaµa
−−≡ K  and 

),( 22
2 2k21 i3ki1i aµaµa

−−≡ Kµarule      (2) 

then )( 1122 aac µµ
2k21 i3ki1i aµaµa

−−≡ K , 

or 

)( 11
1 2k21 i3ki1i aµaµa

−−≡ Kµarule  and 

),( 22
2 122k i

1
1i

1
3ki aµaµa −−

−−
≡ Kµarule     (3) 

then ))(( 21211 aac −
− −

≡ µµ
2k21 i3ki1i aµaµa K , 

or 
)( 11

1 arule µ
2k21 i3ki1i aµaµa

−−≡ K  and 

),( 22
2 arule µ

122k i
1

1i
1

3ki aµaµa −−
−−

≡ K     (4) 

then ))(( 11122 aac µµ
2k21 i3ki1i aµaµa

−−
−≡ K . 

 
The semantics of these formulas is explained in Section 

IV. 
Fig. 1 shows the pseudo-code version of the DOAR 

algorithm for generating all the interesting ordinal 
association rules that hold over a data set R. 

In Section IV we prove the completeness of the DOAR 
algorithm. 

B. Asymptotic Analysis 
The discovery of interesting ordinal rules that hold over 

a data set is, in fact, a search problem.  The brute force 
method (i.e., the “generate and test” method) for solving 

Algorithm DOAR is 
// Input: data set R, min_s, min_c; 
// Output: the set Answer of all interesting ordinal association rules that hold over R.

1. C2 = M}1µ,2i1i1..m,2i,1iA,
2i

,a
1i

a|)
2i

a1µ1i
(a)

2i
,a

1i
{(a ∈<=∈⇒ ; 

2. Scan R and compute the support and confidence of candidates in C2; 

3. Keep the interesting rules from C2 ⇒ L2; 

4. k = 3; 

5. While (Lk-1 ≠ ∅ and k<=m) do  
6. Ck = GenCandidates(Lk-1); 

7. Scan R and compute the support and confidence of candidates in Ck; 

8. Keep the interesting rules from Ck ⇒ Lk; 

9. k = k + 1; 

10. End; 

11. Answer = U
k

kL ; 

12. EndDOAR. 

Fig. 1.  Algorithm for the Discovery of Arbitrary Length Ordinal Association Rules (DOAR) 



  

this problem consists in generating and verifying for 
support and confidence all possible interesting ordinal 
association rules, i.e., all sequences of partial orderings 
between k attributes, 2 ≤ k ≤ m.  This set is exponential on 
the number of record attributes (m). 

The DOAR algorithm significantly prunes the 
exponential search space of all possible interesting ordinal 
association rules, due to the candidate generation 
technique.  The candidate generation restricts the search 
to those regions of the search space where is possible that 
interesting rules exist.  It prunes out all the regions where 
is impossible to find any interesting rule.  The search 
space reduction depends on the data being analyzed.  The 
larger the number of interesting rules in the data set is, the 
larger the size of the candidates sets will be.  In addition, 
the number of data set scans grows with the length of the 
interesting rules in the data set. 

In a worst case scenario, the overall time complexity of 
the merge operations (i.e., rules (1)-(4), line 6 in the 
algorithm) is 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅∑

=
−

m

k
kLkO

3

2

1  

and the overall time complexity of the candidate 
verification operations (lines 7 and 8 in the algorithm) is 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅⋅∑

=

m

k
kCknO

3

2 . 

C. Example 
To better explain the concept of ordinal rules and the 

DOAR algorithm, we give an example of applying it on a 
data set sample, R, shown in TABLE 1.  The data set is 
artificially generated and it is composed of integer value 
data elements, grouped in records. 

 

TABLE 1 THE DATA SET R 
 a1 a2 a3 a4 

r1 2 4 3 1 
r2 5 6 8 7 
r3 9 10 12 11 
r4 12 15 13 11 
r5 1 2 4 3 
r6 5 6 8 7 
r7 9 10 12 11 
r8 12 15 13 16 
r9 27 21 29 24 
r10 30 34 29 38 

 

 
 

In this example, we are interested in discovering all the 
ordinal rules with min_s = 90% and min_c = 80%. 

In the first step, C2 is generated as follows:  

 

C2 = {   a1 ≤ a2, a1 = a2, a1 ≥ a2, 
 a1 ≤ a3, a1 = a3, a1 ≥ a3,  
 a1 ≤ a4, a1 = a4, a1 ≥ a4, 
 a2 ≤ a3, a2 = a3, a2 ≥ a3, 
 a2 ≤ a4, a2 = a4, a2 ≥ a4, 
 a3 ≤ a4, a3 = a4, a3 ≥ a4   }. 

 

By scanning the data set R, only the following 2-length 
candidate rules were found to be interesting (i.e., 
respecting the minimum support and confidence 
condition): 

 

L2 = {a1 ≤ a2, a1 ≤ a3, a2 ≤ a4, a3 ≥ a4}. 
 

We applied the merge formulas (1)-(4) on the set of 2-
length interesting rules, L2, and we obtained the following 
set, C3, of 3-length candidate rules:  

 

C3 = {a2 ≥ a1 ≤ a3, a1 ≤ a2 ≤ a4,  
  a1 ≤ a3 ≥ a4, a2 ≤ a4 ≤ a3}. 

 

From these candidate rules, only two verify the 
minimum support and confidence requirement.  These 
two rules form the set L3, given below: 

 

L3 = {a2 ≥ a1 ≤ a3, a1 ≤ a3 ≥ a4}. 
 

There exist one 4-length candidate rule, but this 
candidate is not interesting, its confidence is only 70%.  
The C4 and L4 sets are given below. 

 

C4 = {a2 ≥ a1 ≤ a3 ≥ a4},  L4 = ∅. 
 

As in the last step no new interesting rules were found, 
the process stops.   

In this example, the search for interesting rules would 
stop anyway, as it reached the maximum possible length 
for a rule (i.e., the number of record attributes).  

IV. THEORETICAL VALIDATION 
We prove the completeness of the DOAR algorithm for 

generating and verifying candidate rules – namely, no 
interesting ordinal rules that exist in the data can be 
missed by this process. 

We also show that no redundant ordinal rules are 
generated through the DOAR algorithm.  We achieve this 
by proving that the starting set C2 does not contain 
redundant ordinal rules and neither the subsequent steps 
in the process will not produce such rules. 

A. Construction of C2 and L2 
We examine the construction of the C2 set. For the set 

M = {≤, =, ≥} of partial ordering relations between 



  

attributes, the binary candidate rules (C2) are generated as 
specified in line 1 of the algorithm (see Fig. 1). 

 
Lemma 1.  It is not necessary to consider as candidate 

rules all the partial orderings between all ordered pairs of 
attributes in A, i.e., ,,|)(),{(

212121 1 Aaaaaaa iiiiii ∈⇒ µ  

}, 121
Maa ii ∈≠ µ . 

 
Proof:   
∀ µ∈Μ, its converse µ-1∈Μ.  So, if  

)(),(
2121 1 iiii aaaa µ⇒  is an interesting rule, then 

)(),(
1212

1
1 iiii aaaa −⇒ µ  is also interesting.  It suffices 

to verify one of these two orderings for support and 
confidence in order to decide if they both define 
interesting rules or not; verifying both these converse 
binary expressions would be redundant. 

 
The C2 candidate rules that have support and 

confidence greater than their given thresholds (min_s and 
min_c) are included in the L2 set.  By limiting the L2 seed 
set in this way, the algorithm will avoid generating 
(verifying) converse candidates (rules), at any higher 
length level. 

B. Candidate Generation 
To explain the procedure for candidate construction 

and to prove its completeness, we introduce the concept 
of binary ordinal rules graph, as defined below. 

 
Definition 4.  Given the L2 set of binary interesting 

ordinal rules, the binary ordinal association rules 
graph, G2 is an oriented graph defined as follows: G2 = 
(A,E), where: 
• The set A of vertices is the set of record attributes.  
• The set E of edges is E ={(ai , aj)µ | if there exist a 

binary rule (ai , aj) ⇒ (ai  µ aj) or (aj , ai) ⇒ (aj  µ-1 
ai) ∈ L2} ⊆ A × A.  µ is called the label of the edge       
(ai , aj)µ. 

 
Theorem 1 below shows that each interesting ordinal 

rule that holds over R has a corresponding path in G2.  
The converse is not true: not every (elementary) path in 
G2 corresponds to an interesting rule. 

 
Theorem 1.  If 

321321 21(),,,,( iiiiiii aaaaaaa
k

µµ⇒K  

)1 kik a−µK is a k-length interesting ordinal association 

rule, then a path ,,),(,),{(
232121
Kµµ iiii aaaa  

}),(
11 −− kkk ii aa µ exists in G2. 

 

Proof: 
If )(),,,,( 121 321321 kk ikiiiiiii aaaaaaaa −⇒ µµµ KK  

is an interesting ordinal association rule over R, denoted 
by r, then it satisfies the minimum support and confidence 
requirement.  This means that: 
• 

kiiii aaaa ,,,,
321
K occur together in at least 

min_s% of the n records in R ⇒ 

jiakjj ,1..1, −=∀ and 
1+jia also occur together in 

at least min_s% of the n records.  Therefore, the 
support of the rule )(),(

11 ++
⇒

jjjj ijiii aaaa µ  is 

greater or at least equal to the support of the 
ordinal rule r. 

and 
• if R’ ⊆R is the set of all the records where 

kiiii aaaa ,,,,
321
K occur together and 1),(

1
µφ iar  

),(),( 12 kiki arar φµφ −K  is true for each record r 

in R’, then |R’|/|R| ≥ min_c.  In this case, if we 
denote by R”⊆R the set of all records where 

jia  

and 
1+jia occur together and ),(),(

1+jj iji arar φµφ  

is true for each record r in R”, then R’⊆ R”.  So, 
|R”|/|R|  ≥ |R’|/|R| ≥ min_c, ∀j, j = 1..k-1. 

 
It follows that, if r is an interesting ordinal rule over R, 

then )(),(
11 ++

⇒
jjjj ijiii aaaa µ  are all interesting rules 

in R, ∀j, j=1..k-1, as they satisfy the minimum support 
and confidence requirement.  Hence, L2 contains either 
rule )(),(

11 ++
⇒

jjjj ijiii aaaa µ  or rule  

)(),( 1
11 jjjj ijiii aaaa −
++

⇒ µ .  So, according to the 

definition of the graph G2, there exist the edges 

jjj ii aa µ),(
1+

,∀j, j=1..k-1.  So, it exists in G2 the path 

}),(,,),(,),{(
11232121 −− kkk iiiiii aaaaaa µµµ K  that corres-

ponds to the interesting ordinal rule r. 
 
Note: As an ordinal rule contains distinct attributes, 

their corresponding paths in G2 are elementary (the path 
vertices are distinct). 

 
In the following we enounce and prove a second 

theorem, needed to explain the semantic of the formulas 
(3) and (4) for joining pairs of rules to generate 
candidates. 

 
Theorem 2. If there is a path ,),(,),{(

232121 µµ iiii aaaa  

}),(,
11 −− kkk ii aa µK  in G2, then there also exists in G2 the 



  

“reverse” path ,),(,,),{( 1
2231

11 )( −−
−

− µµ iiii aaaa
kkk

K  

}),( 1
112 −µii aa . 

 
Proof: 
If there is an edge 

jjj ii aa µ),(
1+

in G2, then, according 

to the definition of G2, there is in L2 a rule ⇒
+

),(
1jj ii aa  

)(
1+jj iji aa µ  or )(),( 1

11 jjjj ijiii aaaa −
++

⇒ µ .  Either 

way, it follows that the graph G2 contains an edge 
11

),( −+ jjj ii aa
µ

 ∀j=1..k-1.  So, the existence of the reverse 

path in G2 is proved. 
 
The semantics of the four join formulas is now clear on 

the basis of the previous two theorems.  Each of these 
joins reunites two (k-1)-length paths in G2 (interesting 
rules in Lk-1) that share a (k-2)-length sub-path – formulas 
(1) and (2), or two (k-2)-length converse sub-paths – 
formulas (3) and (4).   We need to consider all these four 
join-cases in order not to produce converse candidates 
(rules) in Ck (Lk), at any k-length level.  For example, it 
does not make sense to check and report as interesting 
rules both a2 ≥ a1 ≤ a3 and a3 ≥ a1 ≤ a2.  Having such 
converse candidates (rules) would imply wasteful 
processing and would produce redundant equivalent rules. 

Now we can prove the completeness of the candidate 
rules generation procedure. We need to show that Ck ⊇ Lk. 
Obviously, for every interesting ordinal rule 

⇒),,,(
21 kiii aaa K )( 11 21 kikii aaa −µµ K , each of its sub 

expressions of the form ⇒
++

),,,(
1 sjjj iii aaa K  

)( 11 sjjj isjiji aaa
++ −+µµ K  j≥1, j+s≤k has to also be an 

interesting rule.  Hence, if we extended every (k-1)-length 
rule in Lk-1 (its corresponding path in G2) with a partial 
ordering (an edge in  G2,  in such  a way  that the obtained 
 

 

path to be elementary), then we would obtain a superset, 
Ck, of the set Lk of all the k-length interesting rules that 
exist in R.  It is sufficient that the extension to be 
performed at the extremities of the path (rule), as depicted 
in Fig. 2.  

An extension by insertion, as shown in Fig. 3 (by the 
means of the edges µ),( aa

ji  and '),(
1 µ+jiaa ) is 

redundant. If the path obtained by this insertion represents 
an interesting rule, then it would be obtained by an 
extension to the end of another (k-1)-length path, for 
example the path ,,),(,),(,,),{( '1121

KK µµµ +jj iiii aaaaaa  

}),(
323 −−− kkk ii aa µ  in Fig. 3, which passes through the 

vertices  ,,,,
21 jiii aaa K

21
,,,

−+ kj ii aaa K : 

 
 

Let Ck’ be the set of k-length paths (not necessarily 
interesting rules!), formed by the extension to the end of 
all the (k-1)-length interesting rules, as described above.  
Clearly, we can eliminate from Ck’ the paths for which the 
(k-1)-length sub-path, distinct from the rule from which 
the path was obtained, is not an interesting rule.  If we 
perform such a pruning, then we would still remain with a 
superset, Ck , of the set Lk.  For example, in Fig. 2 (a), 
such a pruning would be to eliminate the candidate   

)(),,,,(
121121 21 −− −⇒

kk ikiiiii aaaaaaaa µµµ KK  ob-

tained from the rule ⇒
−

),,,(
121 kiii aaa K  

)(
121 21 −− kikii aaa µµ K  if the expression 

KK
21221 1(),,,,( iiiii aaaaaaa

k
µµ⇒

−
 )

23 −− kik aµ  

does not represent an interesting rule (i.e.,  is not in Lk-1). 
The generation procedure we have proposed is 

equivalent to: extension to the ends of all the (k-1)-length 
interesting rules (paths) in Lk-1, followed by a pruning 
step, as explained above.  Hence, the rule candidate set, 
Ck, produced by the GenCandidates function, is a superset 
of Lk, Ck ⊇ Lk . 

V. EXPERIMENTAL EVALUATION 
In order to establish how well DOAR prunes the search 

space of all possible interesting ordinal rules, we 
performed a case study on a real data set, the Breast 
Cancer Data [1][4].  

 1ia

a 

µ1 
µj 

µ 
µ' 

2ia
jia  

1+jia  2-kia

1-kia
2-µ k

 
Fig. 3.  Candidate rule generation by insertion 
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Fig. 2.  Candidate rule generation by extension 
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The data set used in this case study contains 
information on the symptoms for cancer patients.  In this 
data set there are 457 records and each record represents a 
patient.  Each patient is described by nine attributes [11].  
Each attribute represents a cancer related symptom and 
has an integer value between 1 and 10. 

We applied the DOAR algorithm on this data set, in 
order to identify all the ordinal association rules, which 
have the support and confidence at least 90% and 81%, 
respectively.  In other words, the minimum support and 
confidence thresholds were min_s = 90%, min_c = 81%. 

We found 20 interesting binary rules, 35 interesting 3-
length rules, and 19 interesting 4-length rules (see 
TABLE 2).  There are no more interesting ordinal rule of 
higher length in the data set, for the minimum support and 
confidence thresholds we considered. 

The sizes of the sets Ck and Lk, obtained by running 
DOAR with min_s = 90% and min_c = 81% on the data 
set, are shown in TABLE 2.  For comparison, TABLE 2 
contains the sizes of the set of all possible k-length ordinal 
rules, denoted by SSk. 

TABLE 2.  CARDINALITIES OF Ck, Lk, AND SSk  
 k=2 k=3 k=4 k=5 

|Ck| 108 89 42 3 
|Lk| 20 35 19 0 
|SSk| 108 4536 81648 1224720

 
With our approach, the exponential search space for 

finding the interesting ordinal rules, is significantly 
pruned, as it can be seen in TABLE 2, (see the increase in 
the size of SSk).  For example, for k=3, we explored only 
1.96% of the space of all possible sequences of partial 
orderings between 3 attributes.   

VI. CONCLUSIONS AND FUTURE WORK 
In this paper, we introduced a novel algorithm for the 

discovery of interesting any length ordinal association 
rules in data sets.  We formally proved that the proposed 
algorithm, named DOAR, is complete and we showed 
through a case study that it efficiently explores the search 
space of the possible rules. 

We are working on extending and improving the 
research results described in this paper towards: 
• Validating the scalability of the DOAR algorithm by 

conducting experiments on large real data sets. 
• Defining ordinal association rules that contain 

repeating attributes; adapting the proposed technique 
in order to discover such interesting rules. 

• Using the ordinal association rules detection 
together with supervised learning for medical 

diagnosis prediction.  Preliminary work in this 
direction is reported in [13].  

• Extending ordinal association rules towards 
relational association rules, i.e., rules between 
attributes with different data domains and relations 
not only ordinal between attributes.  

• Using ordinal association rules of arbitrary length 
together with other data mining techniques such as 
classification or regression to increase the accuracy 
of the predictive models [7]. Binary association rules 
are currently used in building predictive models in e-
banking services [12]. 
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