

USING FUZZY CLUSTERING FOR ADVANCED OODB HORIZONTAL
FRAGMENTATION WITH FINE-GRAINED REPLICATION

Adrian Sergiu Darabant, Alina Campan
Babes Bolyai University, Faculty of Mathematics and Computer Science

1 M. Kogalniceanu, Cluj Napoca
Romania

dadi@cs.ubbcluj.ro, alina@cs.ubbcluj.ro

ABSTRACT
In this paper we present a new approach for horizontal
object oriented database fragmentation combined with
fine-grained object level replication in one step. We build
our fragmentation/replication method using AI probabilis-
tic clustering (fuzzy clustering). Fragmentation quality
evaluation is provided using an evaluator function.

KEY WORDS
Object oriented databases, fragmentation, replication, and
fuzzy techniques

1. Introduction

Designing an efficient DOODB system requires fragmen-
tation and allocation techniques capable of handling the
complex features of the object oriented data model. While
the design phase could be adapted from the relational
techniques, this solution is certainly not the most appro-
priate as the OO model is inherently more complex than
the relational model. In order to cope with the increased
complexity of the OO model, one can divide class fea-
tures as follows: simple attributes, complex attributes,
simple methods, complex methods [6].
Fragmentation methods for OODB environments, or flat
data models have been generally considered in [2, 8]. Bel-
latreche et al. [8] propose a method that emphasizes the
role of queries in the horizontal fragmentation. We have
already discussed alternative AI clustering methods for
horizontal fragmentation in OO models with simple and
complex attributes/methods, without replication, in [9, 10,
11, 12]. Generally, replication is performed at fragment
level in all allocation schemes. Synchronous and asyn-
chronous replication are described in [14].

Contributions

In this paper we propose a method for constructing class
fragments in an object oriented database with object level
replication handled directly in the fragmentation step.

In OODBs, horizontal fragmentation can be carried in two
steps: primary and derived. In our method, primary and
derived horizontal fragmentation are performed in a sin-
gle step, similar to [11, 12]. Primary fragmentation groups
class instances according to a set of query conditions [9]
imposed on the values of their simple attributes/methods.
Derived fragmentation takes into account the class rela-
tionships (aggregation, association, complex methods). It
groups instances of a class in fragments according to the
fragmentation of the related classes. Generally, there are
two approaches in derived fragmentation: left order de-
rived fragmentation (parent first) and right order derived
fragmentation (child first). They differ in the order in
which two related classes are fragmented. In the left order
derived fragmentation, the referring (parent) class is
fragmented first and determines a partitioning of the in-
stance set of the referred (child) class. In the right order
derived fragmentation, the referred class is fragmented
first and determines the partitioning of the instances of the
referring class.
Objects are modeled in a vector space. Each object is rep-
resented as a vector. We use distance functions for meas-
uring the dissimilarity between any two objects of the
same class. Objects are placed into fragments according
to their dissimilarity in respect to a set of relevant user
queries. Objects are grouped into overlapping fragments
using a fuzzy clustering method [18].
For evaluating the results of our fragmentation method we
propose an evaluation function that expresses how well
the resulting fragmentation fits the input set of user appli-
cations.
The paper is organized as follows. The next section of this
work presents the object data model and the constructs
used in defining the object database and expressing que-
ries. Section 3 introduces the vector space model we use
to compare objects, methods for constructing the object
vectors and similarity metrics over this vector space. Sec-
tion 4 presents our fuzzy clustering fragmentation algo-
rithm. In section 5 we present a fragmentation example
over a class hierarchy and we evaluate the quality of our
fragmentation scheme.

mailto:dadi@cs.ubbcluj.ro
mailto:alina@cs.ubbcluj.ro

2. Data Model

We use an object-oriented model with the basic features
described in the literature [19]. An OODB is a set of
classes with all their instances and relationships (inheri-
tance, aggregations, associations). Although we deal here,
for simplicity, only with simple inheritance, moving to
multiple inheritance would not affect the fragmentation
algorithm in any way, as long as the inheritance conflicts
are dealt with into the data model. There is a special class
Root that is the ancestor of all classes in the database.
Thus, in our model, the inheritance graph is a tree.
An entry point into a database is a metaclass instance [9]
bound to a known variable in the system. It allows navi-
gation to all classes and class instances of its sub-tree.
There are usually more entry points in an OODB. Given a
complex hierarchy H, a path expression P, C1.A1. …An,
n≥1 denotes a path in the aggregation/association graph
[9,11]. As presented in [9], a query is a tuple with the
following structure q=(Target class, Range source, Quali-
fication clause).

3. Vector Space Modeling

3.1 Primary Fragmentation Modeling

We denote by Q={q1 ,…, qt} the set of all queries in re-
spect to which we want to perform the fragmentation. Let
Pred={p1, …, pq} be the set of all atomic predicates Q is
defined on. Let Pred(C)={p∈Pred| p imposes a condition
to an attribute of class C or of its parent}. Given the
predicate p ≡ C1.A1. …An θ value, p∈Pred(Cn), where
class Ci is the complex domain of Ai-1, i=2..n. Thus, given
two classes C and C’, where C’ is subclass of C,
Pred(C’)⊇Pred(C) [9].
We construct the object condition matrix for class C,
OCM(C) ={aij, 1≤i≤|Inst(C)|, 1≤j≤|Pred(C)|}, where
Inst(C) ={O1, … Om} is the set of all instances of class C
(objects), Pred(C) = {p1, …, pn}:

⎪⎩

⎪
⎨
⎧

=

=
=

trueOpif

falseOpif
a

ij

ij
ij)(,1

)(,0
 (1)

Each line i in OCM(C) is the object condition vector of
Oi, where Oi∈Inst(C).

3.2 Attribute Induced Derived Fragmentation Model-
ing

We have captured so far all characteristics of simple at-
tributes and methods. We need to express the class rela-
tionships in our vector space model. We first model the
aggregation and association relations.
Given two classes CO (owner) and CM (member), where
CM is the domain of an attribute of CO, a path expression
traversing this link navigates from instances of CO to one
or more instances of CM. In the case of left derived frag-
mentation CO will be fragmented first, followed by CM. In
the right derived fragmentation variant the order in which

the two classes are fragmented is reversed. Each of the
two strategies is suitable for different query evaluation
strategies. For example, in reverse traversal query evalua-
tion strategy, the right derived fragmentation variant gives
the best results. We assume here, for space reasons, that
right derived fragmentation method is used. However,
both: the algorithm and the vector space model remain the
same when considering left derived fragmentation order.
In right derived fragmentation method, when fragmenting
CO we should take in account the fragmentation of CM
[12]. Objects of a fragment of CO should aggregate as
much as possible objects from the same fragment of CM.
Let {F1, …Fn} be the fragments of CM. We denote by
Agg(Oi, Fj)={Om | Om∈Fj, Oi references Om } the set of
objects in fragment Fj referred by Oi.
Given the set of fragments for CM, we define the attribute-
link induced object condition vectors for derived fragmen-
tation as adi = (adi1, adi2, … , adin), where each vector
component is expressed by the following formula:

() njFOAggad jiij ,1,),(sgn == (2)

For an object Oi∈Inst(CO) and a fragment Fj of CM, adij is
1 if Oi is linked to at least one object of Fj and is 0 other-
wise. Two objects are candidates to be placed in the same
fragment of CO in respect to Fj if they are both related in
the same way to Fj.

3.3 Method Induced Derived Fragmentation Modeling

In the following paragraphs we model the class relation-
ships induced by the presence of complex methods. Given
a class with complex methods C (owner) that has to be
fragmented, we need to take in account the fragmentation
of classes referred by its complex methods. We express
method reference dependencies in our vector space.
We denote by MetComplex(C) = {mi | mi is a complex
method of C} – the set of all complex methods of class C.
Let SetCRef(m,C)={CR | C≠ CR, CR is referred by method
m∈MetComplex(C)} be the set of classes referred by the
complex method m of class C. For a given instance of a
class C with complex methods we denote as:
SetORef(m, Oi, CR)={O’

r∈Inst(CR) | CR∈SetCRef(m,C),
m∈MetComplex(C), O’

r is referred by method m } – the
set of instances of class CR, referred by the complex
method m of class C, called by object Oi.
For each pair (mk,CR)∈{mk∈MetComplex(C)}x Set-
CRef(mk,C) we quantify the way each instance of C refers
- through complex methods - instances from fragments of
CR. Given a class CR referred by a complex method mk of
class C, and the fragments {F1,…Fn} of class CR, we de-
fine the method-link induced object condition vectors for
derived fragmentation. For each instance Oi of C let mdi=
(mdi1, mdi2, …, mdin) be the method-link induced object
condition vector. Each vector component is defined by the
following formula:

nj
COmSetORef

FOCInstO
md

Rik

jlRl
ij ,1,

),,(

}|)({
sgn =⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ ∈∈
=

I

I
 (3)

Each mdij evaluates to 1 when Oi∈Inst(C) refers objects
from fragment Fj of class CR and 0 otherwise. We obtain
one method-link induced object condition vector for each
object Oi and each pair (mk,CR) in {mk∈MetComplex(C)}x
SetCRef(mk,C).

3.4 Derived Fragmentation Modeling

As the number of elements in {mk∈MetComplex(C)}x
SetCRef(mk,C) is usually large we need to use some heu-
ristics in order to retain only the pairs with significant
impact in the fragmentation. In order for a pair (mk, CR) to
be kept it should satisfy the following combined restric-
tions: (a) The number of calls to the method mk should be
significant compared to the contribution brought by all
method calls made by applications running on the data-
base; (b) The number of instances of CR referred by the
method mk should be significant compared to the number
of instances of all classes generally referred by the appli-
cations. The above conditions are expressed in the follow-
ing formula (significance factor):

∑ ∑

∑

∑

∈ ∈

∈

∈

×

×=

),()(

)(

)(

),,(

),,(

)(
)(

),(

CmSetCRefC CInstO
prk

CInstO
Rik

CMetComplexm
l

k
Rk

kp r

i

l

COmSetORef

COmSetORef

mNrCalls
mNrCalls

CmSig

(4)

In equation (4) the first factor gives the ratio between the
number of calls to method mk and the number of calls of
all complex methods of class C. The second factor gives
the ratio between the number of CR instances referred by
mk and the number of all objects referred by mk. In reality
the actual method parameters would normally influence
the set of objects referred by the method. Even more, the
set of referred objects could be as well influenced by the
internal state of the object. However, tracking all the pos-
sible combinations is computationally intractable, even in
simple situations. The statistical heuristic proposed in (4)
is still manageable and helps reducing the problem space
dimensions.
We capture the semantic of both primary and derived
fragmentation phases into one single step. We unify the
object condition vector, the attribute-link and method-link
induced object condition vectors for each object Oi of the
class C, and we obtain the extended object condition vec-
tor. Each extended object condition vector quantifies all
the information needed for fragmentation: the conditions
imposed on the object’s state and the relationships of the
object with instances of related classes.
If the class C is related with classes CA1, CA2,…, CAp by
means of complex attributes, and with classes CM1, CM2,
…, CMr by means of complex methods, then the extended
object condition vector aei for object Oi∈Inst(C) is ob-
tained by appending the p attribute-link induced object
condition vectors and the mc=|{mk∈MetComplex(C)}x
SetCRef(mk,C)| method-link object condition vectors to

the object condition vector of Oi. However, as we have
already mentioned above, we are using the significance
factor to filter out non-relevant pairs (mk, CR) and vectors
derived from them. The significance threshold is an input
parameter for the fragmentation algorithm and its value is
experimentally determined.
We denote by EOCM(C) the extended object condition
matrix for class C.

3.5 Dissimilarity (distance) between objects

The aim of our method is to group into a cluster those
objects that are similar to one another. Distance between
objects is computed using the following metrics:

()∑
=

−=
n

k
jkikjiE aeaeaeaed

1

2),(

∑
=

−=
n

k
jkikjiM aeaeaeaed

1
),(

(5)

We use dE and dM in (5) to measure how distant two ob-
jects are.

4. Fuzzy Clustering Based Fragmentation

Fuzzy c-means (FCM) is a method of clustering which
allows one object to belong to one or more clusters. The
algorithm we propose for horizontal fragmentation is de-
scribed in the following:
Algorithm Fuzzy-c-meansFrag is
Input: Class C, Inst(C) to be fragmented, the
distance function dist:Inst(C)xInst(C)→R,
m=|Inst(C)|, 1<k≤m desired number of fragments,
EOCM(C), z the fuzziness factor, ε_prob the prob-
ability matrix change threshold, MaxSteps maxi-
mum number of iterations, MinMembershipProb
minimum membership probability, ε_centr threshold
for centroid equality.
Output: The set of clusters F={F1,…,Ff}, f ≤ k.
Var:
 U=[ui
Begin

j] the probability matrix, i=1..m, j=1..k.

 InitRandomProbMatrix(U(0))
 // or InitGuidedProbMatrix(EOCM(C),U(0),k);
f:=k; Fj:=∅, j=1..f; p:=1;
Repeat

 //calculate the centroids Centr(p)=[cj] with U(p)

 For j:=1 to f do

∑

∑

=

=
⋅

=
m

i

z
ij

i

m

i

z
ij

j

u

aeu

c

1

1 (a1)

 End For;
 RedIdentCentr(Centr(p), U(p), f, ε_centr);
 For i:=1 to m do // update U(p) using U(p-1)
 For j:=1 to f do

1
2

1),(
),(

1

−

=
∑ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

=

zf

l li

ji

ij

caedist
caedist

u (a2)

 End For;
 End For;
 p = p+1;
 Until (max{|u(p)ij- u(p-1)ij|}≤ε_prob) or
 (p ≥ MaxSteps);
 For i:=1 to m do
 For j:=1 to f do
 If u(p)ij ≥ MinMembershipProb then
 Fj = Fj∪{Oi};
 End For;
 End For;
End.

The algorithm generates the membership probability of
each object of C to all clusters. It starts with an initial
probability matrix U(0). An element uij of this matrix ex-
presses the membership probability of object Oi to the
cluster Fj. The sum of membership probabilities for an
object to all clusters must be equal to one – the member-
ship probability matrix is standardized. The probability
matrix is optimized in an iterative manner. Each iteration
starts by determining the centers of each fuzzy cluster,
Centr={c1,…, cf} – line (a1) in the algorithm. Next we
adjust the membership probabilities to the clusters repre-
sented by the new centroids – line (a2) in the algorithm.
This iterative process aims to minimize the following ob-
jective function:

∑∑
= =

⋅=
m

i

f

j
ji

z
ijz ceadistuJ

1 1
),((6)

where z is the fuzziness factor as described in [18]. The
iterative process stops when changes in the probability
matrix between two consecutive steps is insignificant
(bellow a threshold value, ε_prob). The J function gener-
ally has saddle points and the generated probability series
uij are not always convergent. To deal with this, we limit
the number of iterations to MaxSteps.
At the end of the iterative process we build the horizontal
fragments for the class C. We assign each object to all
clusters with a membership probability exceeding Min-
MembershipProb. We chose 1/f (f is the number of result-
ing clusters) as threshold value.
If two centroids become equal in the iterative process that
means that their clusters would contain similar objects
(these are degenerated clusters). As they do not have a
distinct semantic for the fragmentation, we merge all de-
generated clusters with equal centroids. The resulting
cluster will accumulate all objects of the source degener-
ated clusters by summing their membership probabilities.
Degenerated clusters may appear when one initially re-
quests more fragments than can be separated in our mod-
eled vector space.
The initial selection of the probability matrix obviously
influences the algorithm evolution. We propose two
methods for initializing the probability matrix. The first
one is implemented in the InitRandomProbMatrix proce-
dure and generates a random standardized membership
probability matrix. The second one is implemented in
InitGuidedProbMatrix and generates the initial probabil-
ity matrix as follows. It selects between the class in-
stances the set of f most dissimilar ones (dissimilarity is

measured as distance between objects). These objects are
considered to be the initial centroids (Centr). Each object
from Centr is assigned a membership probability of 1 to
its cluster, and 0 to other clusters. For every other object
we determine the set of the closest, equally distant cen-
troids according to the distance function. Let cnum be the
number of these centroids. We assign equal membership
probabilities (1/cnum) to each corresponding cluster. We
proceed in this manner in order to lower the risk of ob-
taining degenerated clusters.

5. Results and Evaluation

In this section we illustrate the experimental results ob-
tained by applying our fragmentation scheme on a test
object database. Given a set of queries, we first obtain the
horizontal fragments for the classes in the database; af-
terwards we evaluate the quality and performance of the
fragmentation results. The problem with the evaluation
method is that it is difficult to quantify a fragmentation
result without allocating the fragments to the nodes of a
distributed system. On the other side, the allocation it’s a
very complex process on its own. As resolving the alloca-
tion problem in the general case is not a trivial task, we
need a simplified allocation model, yet a valid one. We
consider a distributed system running database appli-
cations (queries). All applications run with different fre-
quencies on different nodes of the system. We chose to
allocate each fragment to the node where it is most
needed (accessed).

Root

Employee Student

Prof Researcher Staff UnderGrad Grad

Dept OrgUnitFaculty Doc

TechReport Paper

Person

Root

Employee
Student

Prof Researcher Staff

U nderG rad

G rad

D ept Faculty

D oc

OrgUnit

T echReport

Paper

Figure 1 The database class hierarchy and

aggregation/association graph

Our sample object database represents a reduced univer-
sity database. The inheritance hierarchy and a trimmed
down version of the aggregation/ association graph are
shown in Figure 1. The links between Doc and Person
should be inherited by all subclasses of Person and Doc.
This is graphically represented in the figure by the dotted

arrows. Similar inherited links are present for other
classes in this graph (links not represented here). The mo-
tivation for aggregation/association inheritance is pre-
sented in [11]. We use the same set of 14 relevant queries
for guiding the fragmentation process, as in [11].
For measuring the fragmentation quality we determine the
cost of remote accesses combined with the cost of local
irrelevant accesses to each fragment. Remote accesses are
made by applications running on a given node and access-
ing objects that are not stored on that node. Local irrele-
vant accesses are given by local processing incurred when
a query accesses a fragment. Each access to a fragment
implies a scan to determine objects that satisfy a condi-
tion. Irrelevant local access measure the number of local
accesses to objects that will not be returned by the query.
Intuitively, we want that each fragment be as compact as
possible and contain only objects accessed by queries
running on the fragment’s node.
We introduce the following measure for calculating the
fragmentation quality:

FPE(C) = FEM + FER (7)

∑∑
=

−

∈== ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−∗=

T

t

i

sFj
jtCi

M

i
ts

j

FAccFfreqCFEM
1

1

,11
)(U (8)

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
−

−=

∈=

= = ∈=
∑∑

U

U

M

sFi
itC

T

t

S

s

M

sFi
itCts

i

i

FAccFragCoverx

xFAccxfreqCFER

,1

1 1 ,1
)(

 (9)

AccC,t represents the set of objects of class C accessed by
query t. freqts is the frequency of query t running on site s.
In (8) s is the site where Fi is located. M is the number of
fragments for class C, T is the number of queries and S is
the number of sites. The FEM term calculates the local
irrelevant access cost for all fragments of a class. For a
fragment and a query the irrelevant objects are those that
a) are not accessed by the query or b) are accessed by the
query but are replicas of objects from other fragments
already considered in the evaluation. This comes from the
natural fact that, when evaluating a query, will be referred
only one replica of every object needed by that query.
FER calculates the remote relevant access cost for all
fragments of a class. The second factor expresses the
number of remote accessed objects, for a given query t
running on a site s. For a given query running on a given
node, FragCover calculates an optimal covering scheme
of the set of remote accessed objects, formed only with
remote fragments, so that only one replica of each remote
object is considered.
The FER term of the quality measure also reflects the
fragmentation behavior in the presence of complex aggre-
gation/association hierarchies. Minimizing the navigation
degree from a fragment to its neighbor fragments (frag-
ments of the related classes) helps reducing inter-node
data transportation when evaluating queries. The Frag-

Cover factor includes, but is not limited to, the order of
magnitude of the navigation degree for the fragments of a
given class when evaluating queries over its fragments.
Globally, FPE measures how well fragments fit the object
sets requested by queries. The fragmentation is better
when the local irrelevant costs and the remote relevant
access costs are smaller.
By applying the algorithm we obtain the following repli-
cation degrees on each class:

Class /
Method

No of
Instances

Euclid
Guided

Euclid
Random

Manhattan
Guided

Manhattan
Random

Dept 12 0% 0% 0% 0%
Grad 13 15% 7% 15% 15%
OrgUnit 5 20% 20% 20% 40%
Prof 20 0% 0% 0% 0%
Researcher 6 0% 20% 0% 0%
Staff 5 0% 0% 0% 0%
Undergrad 61 39% 31% 32% 9%
 Average 12% 13% 11% 11%

Table 1. Replication percentage for all classes.

Using the given query access frequency, the fragments
above are allocated to 4 distributed sites. For space rea-
sons we do not provide here the application frequencies.
A similar example is presented in [11].

732
646

732
639

2549

523

0
200
400

600
800

1000

E
uc

lid
G

ui
de

d

E
uc

lid
R

an
do

m

M
an

ha
tta

nG
ui

de
d

M
an

ha
tta

nR
an

do
m

C
en

tra
lis

ed

R
ep

lic
at

ed

PE
 V

al
ue

s

Figure 2 Comparative FPE values: fuzzy clustering,

centralised, total replicated databases.

We qualitatively compare the results of our fragmentation
method with a centralized and a full replicated database in
Figure 3. The centralized version of the database is allo-
cated to node S1, while in the replicated case each node
holds a copy of the entire database.
As it can be seen, all the fuzzy fragmentation methods
with any of the distance measures generally perform bet-
ter than the centralised case.
There are two versions of results for each distance meas-
ure. One of them is the guided approach where the initial
centroids are the most dissimilar objects of the class. This
choice influences the initial probability matrix. The other
approach for each measure is to take a random standard-
ised initial membership probability matrix. As seen in the
figure, the guided versions have slightly worse scores.

This is because the fuzzy behaviour of the algorithm is
altered by the initial choice. On the other side, the random
initial probability matrix yields fluctuant results and is
impossible to know in advance if the obtained fragmenta-
tion is good or not. Without a reference average cost it is
impossible to say if a FPE cost obtained by the random
run is good or not. A good alternative is to first apply the
guided method in order to obtain a good average result.
Afterwards, the random fuzzy version of the algorithm
could be run several times, as long as the obtained FPE
values are improved. This approach follows the general
idea that a fuzzy clustering algorithm must be repeatedly
applied and the best result be retained. The results for
RandomEuclid and RandomManhattan in Figure 2 are the
improved results after running the random algorithms
several times.
In Figure 3 we compare the results of the fuzzy horizontal
fragmentation algorithm with those obtained by using the
k-means clustering algorithm. The Primary algorithms do
not take in consideration the complex class relationships.
The complex versions of the k-means algorithm express
and handle all inter-class relationships, but without repli-
cation [12]. We can see that the fuzzy fragmentation algo-
rithm performs better in all its versions compared to the
k-means clustering algorithm.

732
646

732
639

1307 1307

979

803

0

200

400

600

800

1000

1200

1400

Eu
cl

id
G

ui
de

d

Eu
cl

id
R

an
do

m

M
an

ha
tta

nG
ui

de
d

M
an

ha
tta

nR
an

do
m

k-
M

ea
ns

 P
rim

ar
y

E
uc

lid

k-
m

ea
ns

 P
rim

ar
y

M
an

ha
tta

n

k-
m

ea
ns

 C
om

pl
ex

E
uc

lid

k-
m

ea
ns

 C
om

pl
ex

M
an

ha
tta

n

PE
 v

al
ue

s

Figure 3 Fuzzy fragmentation vs k-means primary

and k-means primary+derived fragmentations.

This is due to the fine replication obtained by assigning
the same object to multiple fragments when needed. The
most important improvement obtained by using the fuzzy
clustering algorithm is the fact that we can quantify the
degree of membership of one object to all clusters. When
an object is needed in more than one cluster its member-
ship degree will be high for all those fragments. This is an
important achievement if we think that fragmentation is
driven by user applications and users are not required to
express queries with very well separated results so that
fragmentation be an easy task.

6. Conclusions

We presented in this paper a new approach in horizontal
distributed object oriented database fragmentation. Our

fragmentation method uses the c-means fuzzy clustering
method for grouping class instances into fragments. When
fragmenting a class instance set, often an object is candi-
date to be placed in multiple fragments, due to the nature
of the user applications accessing data. Traditional algo-
rithms take a sharp decision in this case, by placing the
conflicting objects in only one of the fragments. We claim
that taking in consideration the fuzzy aspect of object to
fragment membership and placing an object in multiple
fragments, when needed, might help improve perform-
ance of the obtained fragmentation scheme. We compared
our results to those obtained by applying the traditional
k-means clustering algorithm – that generates non-
overlapped clusters. The obtained fragmentation quality is
better than the results of traditional non-intersecting
fragmentation schemes.
As future work, we plan to improve the applicability of
our combined fragmentation with fine replication scheme.
The need to apply several times the fragmentation algo-
rithm in order to improve the intermediary results could
possible be eliminated by using a different heuristic for
the initial probability matrix.

References:

[2] C.I. Ezeife & K. Barker, A Comprehensive Approach
to Horizontal Class Fragmentation in a Distributed Object
Based System, International Journal of Distributed and
Parallel Databases, 3(3), 1995, 247-272.
[6] C.I. Ezeife & K. Barker, Horizontal Class Fragmenta-
tion for Advanced-Object Modes in a Distributed Object-
Based System, Proc. of the 9th Int. Symposium on Com-
puter and Information Sciences, Turkey, 1994, 25-32.
[8] L. Bellatreche, K. Karlapalem & A. Simonet,
Horizontal Class Partitioning in Object-Oriented
Databases, Lecture Notes in Computer Science, 1308,
France, 1997, 58–67.
[9] A.S. Darabant & A. Campan, Hierarchical AI Cluster-
ing for Horizontal Object Fragmentation, Proc of Int.
Conf. of Computers and Communications, Oradea, Ro-
mania, 2004, 117-122.
[11] A.S. Darabant, A.Campan & O. Cret, Hierarchical
Clustering in Object Oriented Data Models with Complex
Class Relationships, Proc of 8th IEEE Int. Conf. on Intel-
ligent Engineering Systems, Romania, 2004, 307-312.
[12] A.S. Darabant, A. Campan & others, AI Clustering
Techniques: A New Approach in Horizontal Fragmenta-
tion of Classes with Complex Attributes and Methods in
Object Oriented Databases, Proc of the Int. Conf. on The-
ory and Applications of Mathematics and Informatics,
Greece, 2004 (to appear).
[14] H. Edelstein, The Challenge of Replication, Parts 1
and 2, DBMS: Database and Client-Server Solutions,
1995.
[18] J.C. Bezdek, Pattern Recognition with Fuzzy Objec-
tive Function Algorithms (Plenum Press, USA, 1981).
[19] E. Bertino & L. Martino, Object-Oriented Database
Systems; Concepts and Architectures (Addison-Wesley,
1993).

	ABSTRACT
	KEY WORDS

