
ACTA UNIVERSITATIS APULENSIS No 10/2005

CLUSTERING TECHNIQUES FOR ADAPTIVE HORIZONTAL
FRAGMENTATION IN OBJECT ORIENTED DATABASES

Alina Campan, Adrian Sergiu Darabant, Gabriela Serban

Abstract. Optimal application performance in a Distributed Object Ori-
ented System requires class fragmentation and the development of allocation
schemes to place fragments at distributed sites so data transfer is minimal. A
horizontal fragmentation approach that uses data mining clustering methods
for partitioning object instances into fragments has already been presented in
[1, 2, 3, 4]. Essentially, our approach takes full advantage of existing data,
where statistics are already present, and develops fragmentation around user
applications (queries) that are to be optimized by the obtained fragmentation.
But real databases applications evolve in time, and consequently require re-
fragmentation in order to deal with new applications entering the system and
other leaving. Obviously, for obtaining the fragmentation that fits the new
user applications set, the original fragmentation scheme can be applied from
scratch. However, this process can be inefficient. In this paper we extend our
initial fragmentation approach and propose an incremental method to cope
with the evolving user application set. Namely, we handle here the case when
new user applications arrive in the system and the current fragments must be
accordingly adapted.

2000 Mathematics Subject Classification: 62H30, 68P15.

1. Introduction

Horizontal fragmentation, in object oriented database systems, distributes
class instances (objects) into fragments. There are several theoretical ap-
proaches for relational distributed databases fragmentation, some of them with
practical results. Few of them have been extended and adapted to distribute
object oriented databases. However, this extension of a limited technique, from

1

A. Campan, A.S. Darabant, G. Serban - Clustering Techniques for
Adaptive Horizontal Fragmentation in OODBs

a simple model to a complex one, is not natural, as the additional complexity
cannot be flexibly coped with. We have proposed in [1, 2, 3, 4] a novel ap-
proach for primary and derived fragmentation of object oriented databases. As
the relational model can be viewed as a particular case of the object oriented
model, the proposed techniques can be successfully applied as well for rela-
tional databases. These new techniques are built around data mining clustering
methods. We derived a mathematical model of the database that captures the
significance of queries and the affinity between them and the class instances.
This model allows an almost off-the-shelf automatic database fragmentation
using clustering algorithms, as opposed to other existing approaches, which all
require a substantial human intervention in the decisional process. But real
databases evolve in time, and consequently require re-fragmentation in order
to deal with new applications entering the system and others leaving, and with
object set evolution. Obviously, for obtaining the fragmentation that fits the
new user applications set, the original fragmentation scheme can be applied
from scratch, an undesirable alternative from the point of view of processing
effort, extended database maintenance and unavailability time etc. To our
knowledge, there are no practical approaches for incrementally maintaining
an efficient database fragmentation. We propose in this paper an incremental
technique to cope with the evolving user application set. Namely, we handle
here the case when new user applications arrive in the system and the cur-
rent primary fragments (e.g. classes have only simple attributes and simple
methods) must be accordingly adapted.

2. Mathematical Vector Model of the Object Oriented
Database

We will shortly review in this section the vector model proposed for modelling
an object oriented database. This model is described in extension in [1, 2, 3,
4].

Fragmentation of an object database means fragmenting one by one each
of its classes. Thus, we will refer to the fragmentation of one class let it be C.
A class C is an ordered tuple C = (K, A,M, I), where A is the set of object
attributes, M is the set of methods, K is the class identifier and I is the set of
instances of class C. We deal in this paper only with primary fragmentation
([4]). Classes are organized in an inheritance hierarchy, in which a subclass
is a specialization of its superclass. Although we deal here for simplicity only
with simple inheritance, moving to multiple inheritance would not affect the

2

A. Campan, A.S. Darabant, G. Serban - Clustering Techniques for
Adaptive Horizontal Fragmentation in OODBs

fragmentation algorithms in any way, as long as the inheritance conflicts are
dealt with into the data model. Association between an object and a class is
materialized by the instantiation operation. An object O is an instance of a
class C if C is the most specialized class associated with O in the inheritance
hierarchy. An object O is member of a class C if O is instance of C or of one
of subclasses of C. An object oriented database is a set of classes from an
inheritance hierarchy, with all their instances. There is a special class Root
that is the ancestor of all classes in the database. Thus, in our model, the
inheritance graph is a tree.

Other relations acting between classes in a database are the aggregation
and association relations ([4]).

An entry point into a database is a meta-class instance bound to a known
variable in the system. An entry point allows navigation from it to all classes
and class instances of its sub-tree (including itself). There are usually more
entry points in an OODB.

Given a complex hierarchy H, a path expression P is C1.A1 . . . An, n ≥ 1
where: C1 is an entry point in H, A1 is an attribute of class C1, Ai is an
attribute of class Ci in H such that Ci is the domain of attribute Ai−1 of class
Ci−1 (1 ≤ i ≤ n).

The fragmentation and allocation of an object oriented database aim to op-
timize the execution of a set of user queries. In general a query is a tuple with
the following structure: q=(Target class, Qualification clause), where: Target
class specifies the class over which the query returns its object instances; Qual-
ification clause is a logical expression over the class attributes in conjunctive
normal form. The logical expression is constructed using simple predicates:
attribute Θ value where q ∈ {<,>,≤,≥, =, 6=}.

Let Q = {q1, . . . , qt} be a set of queries in respect to which the fragmen-
tation has to be performed. Let PredQ = {p1, . . . , pq} be the set of all simple
predicates Q is defined on. Let PredQ(C) = {p ∈ PredQ| p imposes a con-
dition to an attribute of class C}. Given two classes C and C ′, where C ′ is
subclass of C, PredQ(C ′) ⊇ PredQ(C). Thus the set of predicates for class
C ′ comprises all the predicates directly imposed on attributes of C ′ and the
predicates defined on attributes of its parent class C and inherited from it.
The reasons for this condition inheritance are explained in [1, 2, 3].

To each object Oi in the set Inst(C) of all instances of class C, i =
1..m, m = |Inst(C)|, we associate an object-condition vector ai = (ai1, . . . , ais),
where PredQ(C) = {p1, . . . , ps}:

3

A. Campan, A.S. Darabant, G. Serban - Clustering Techniques for
Adaptive Horizontal Fragmentation in OODBs

aij =

{
0, if pj(Oi) = false
1, if pj(Oi) = true

Objects will be grouped together in fragments so that objects within a
fragment to have high similarity with each other and low similarity with objects
in other groups. Similarity and dissimilarity between objects are calculated
using metric or semi-metric functions, applied to the object-condition vectors
that characterize objects. We use in this paper the Euclidian distance for
measuring objects similarity:

dE(ai, aj) =

√
s∑

l=1
(ail − ajl)2,

where ai, aj are the object-condition vectors of Oi, Oj ∈ Inst(C).

3. Incremental Fragmentation Using the CBIC Algorithm

3.1 Initial Fragmentation Phase

When passing from a centralized database to a distributed one, an initial
fragmentation is required. In our approach ([1,2,3,4]), given a set Qinit =
{q1, . . . , qp} of queries, the initial fragmentation phase of the object set Inst(C)
of class C requires first that objects in Inst(C) to be modelled as described
above. Then a clustering method (k-means) is applied over the vector space
describing Inst(C), and the resulting clusters represent the fragments for class
C.

3.2 User Applications Change

The existing fragmentation of the distributed object oriented database was
developed such that to optimize the execution of the initial query set, Qinit.
When new queries arrive into system Qnew = Qinit∪{qp+1, . . . , qt}, the current
fragmentation must be adapted. We apply in this intention an incremental,
k-means based clustering method, Core Based Incremental Clustering (CBIC)
([5,6]).

The extension of the query set Qinit to Qnew means that for a number
of classes in the database, their associated set of predicates increases. These
classes have to be re-fragmented to fit the new query set. Let C be such
a class, for which PredQ init(C) = {p1, . . . , pn} evolves to PredQ new(C) =
PredQ init(C) ∪ {pn+1, . . . , ps}. Consequently, the object-condition vector for
each object Oi ∈ Inst(C) is extended as follows:

4

A. Campan, A.S. Darabant, G. Serban - Clustering Techniques for
Adaptive Horizontal Fragmentation in OODBs

a′i = (ai1, . . . , ain︸ ︷︷ ︸
initial object−condition ai of Oi

, ai,n+1, . . . , ais)

The CBIC method starts from the partitioning of Inst(C) into clusters es-
tablished by applying k-means in the initial fragmentation phase. Let {K1, K2,

. . . , Kp} be the initial fragments of Inst(C), Ki ∩ Kj = ∅, i 6= j,
p⋃

l=1
Kl =

Inst(C). CBIC determines then {K ′
1, K

′
2, . . . , K

′
p} the new partitioning of ob-

jects in Inst(C) after query set extension. It starts from the idea that, when
adding few components (features, attributes) to the object-condition vectors
and these components don’t bring to much information in the system, then
the old arrangement into clusters is close to the new one. The algorithm de-
termines than those objects within each fragment Ki that have a considerable
chance to remain together in the same cluster. They are those objects that,
after feature extension, still remain closer to the centroid (cluster mean) of
cluster Ki. These objects form what is called the core of cluster Ki, denoted
by Corei. Note: the centroid of Ki to which we report the object after ex-
tension is, of course, calculated as the mean of the extended object-condition
vectors of objects in Ki.

The cores of all fragments Ki, i = 1..p, will be the new initial clusters
from which the iterative partitioning process begins. Next, CBIC proceeds
in the same manner as the classical k-means does. The CBIC algorithm can
be found in [5,6]. As experiments show, the result is generally reached by
CBIC more efficiently than running k-means again from the scratch on the
feature-extended object set.

4. Results and Evaluation

4.1 Sample Database and Queries

We use a sample object database that represents a reduced university
database. The inheritance hierarchy is given in Figure 1.

The queries running on the classes of the database are given bellow.
q1: This application retrieves all graduate students enrolled in Component
Oriented Programming and Intelligent Systems departments.
q1 = (Grad, Grad.Dept in (“Component Oriented Programming”, “Intelligent
Systems”))
q2: This application retrieves all undergraduate students enrolled in Computer
Science departments and having grades between 7 and 10.

5

A. Campan, A.S. Darabant, G. Serban - Clustering Techniques for
Adaptive Horizontal Fragmentation in OODBs

Figure 1: The database class hierarchy

q2 = (UnderGrad, UnderGrad.Dept like “CS%” and UnderGrad.Grade be-
tween 7 and 10)
q3: This application retrieves all undergraduate students enrolled in Computer
Science or Mathematics departments and which are older than 24.
q3 = (UnderGrad, (UnderGrad.Dept like “Math%” or UnderGrad.Dept like
“CS%”) and UnderGrad.Age≥24)
q4: This application retrieves all researchers having published at least two
papers.
q4 = (Researcher, Researcher.count(Reasercher.Doc)≥2)
q5: This application retrieves all teachers employed in Component Oriented
Programming or Intelligent Systems departments and having salaries over
40000.
q5 = (Prof, Prof.Dept in (“Component Oriented Programming”,“Intelligent
Systems”) and Prof.Salary≥40000)
q6: This application retrieves all teachers having published in IEEE or ACM
publications.
q6 = (Prof, Prof.Doc.Publisher in (“IEEE”, “ACM”))
q7: This application retrieves all students failing to get their remove.
q7 = (Student, Student.Grade≤5)
q8: This application retrieves all employees having salaries over 35000.
q8 = (Employee, Employee.Salary>35000)
q9: This application retrieves all graduate students having published at least
one paper.
q9 = (Grad, Grad.count(Grad.Doc)≥1)
q10: This application retrieves all staff employees having salaries over 12000.
q10 = (Staff, Staff.Salary>12000)
q11: This application retrieves all researchers having published a smaller num-

6

A. Campan, A.S. Darabant, G. Serban - Clustering Techniques for
Adaptive Horizontal Fragmentation in OODBs

ber of papers than the average number of papers published by all researchers.
q11 = (Researcher, Researcher.Count(Paper)<Avg(Researcher.Count(Paper))
q12: This application retrieves all married graduate students.
q12 = (Grad, Grad.MaritalStatus=“married”)
q13: This application retrieves all undergraduate students enrolled in Mathe-
matics and Computer Science departments.
q13 = (Undergraduate, Undergraduate.Dept like “Math-CS%”)
q14: This application retrieves all persons older than 30.
q14 =(Person, Person, Person.Age>30)
q15: This application retrieves all assistant professors older than 28.
q15 = (Prof, Prof.Position=“assistant professor” and Prof.age>28)
q16: This application retrieves all students of hungarian or german nationality.
q16 = (Student, Student.Nationality in (“hungarian”, “german”)

Queries from q1 to q12 are the initial ones - the initial horizontal fragmen-
tation and allocation were performed in respect to these queries, so that to
optimize their execution: Qinit = {q1, . . . , q12}. Queries from q13 to q16 are
newly entered in the system, and the existing fragmentation must be adapted
to fit to and to optimize the new application set: Qnew = Qinit∪{q13, . . . , q16}.

4.2 Quality Measures

We use two different kinds of quality measures: measures for evaluating
the performances of the two fragmentation schemes (CBIC and k-means) and
measures for evaluating the quality and performance of the fragmentation re-
sults.

Quality measures for the performances of the two fragmentation
schemes (CBIC and k-means). As a quality measure for CBIC we take
the movement degree of the core objects and of the extra-core objects. In other
words, we measure how the objects in either Corei or OCorei = Ki \ Corei

remain together in clusters after the CBIC algorithm ends. As expected,
more stable the core objects are and more they remain together in respect to
the initial sets Corei, better was the decision to choose them as seed for the
incremental clustering process. Also, as the experiments show, the movement
degree was in most cases smaller for the core objects than for the extra-core
objects. The core stability factor is expressed as follows ([6]):

CSF (CORE) =

p∑
j=1

|Corej |
no of clusters where the objects in Corej ended

p∑
j=1

|Corej |

7

A. Campan, A.S. Darabant, G. Serban - Clustering Techniques for
Adaptive Horizontal Fragmentation in OODBs

The out-of-core stability factor (OCSF (OCORE)) is described accordingly
([6]). Also, for comparing the performances of CBIC and k-means, we give the
number of iterations needed by each of them for reaching the result.

Table 1: Comparative results for the two fragmentation schemes (CBIC and
k-means)

Experiment UnderGrad Grad Prof Staff Researcher
No of objects 128 26 30 8 6
No of attributes (m+s) 8 6 7 3 4
No of new attributes (s) 3 2 3 1 1
No of k-means iterations 3 3 3 2 2
for m attributes
No of k-means iterations 4 3 3 2 2
for (m+s) attributes
No of CBIC iterations 2 3 3 2 2
for (m+s) attributes
CSF(CORE) 0.72 1.0 1.0 1.0 1.0
OCSF(OCORE) 0.86 - 0.5 - -

From Table 1 we observe that using the CBIC algorithm the number of
iterations for finding the solution is, in the average, smaller, and also the cores’
stability factor, CSF (CORE), is high.

In Table 2 we present, for each experiment, the components (attributes)
in decreasing order of their information gain (IG). We emphasized the new
entered attributed, for observing their significance in differentiating objects.

From Table 2 it results that the importance of the added attributes influ-
ence the number of iterations performed by the CBIC algorithm for finding
the solution. When the information brought by the added attributes was close
to that of the initial ones, the number of iterations performed by CBIC is also
close to the number of iterations performed by k-means for all the attributes.

Measures for the quality and performance of the fragmentation
results. For evaluation we use a variant of the Partition Evaluator as proposed
by Chakravarthy for vertical relational fragmentation ([1, 2]). The Partition
Evaluator as proposed by Chakravarthy is composed of two terms: the local
irrelevant access cost (EM) and the remote relevant access cost (ER). For

8

A. Campan, A.S. Darabant, G. Serban - Clustering Techniques for
Adaptive Horizontal Fragmentation in OODBs

Table 2: The decreasing order of attributes in respect to the information gain
measure

Experiment Order of attributes IG of new attributes /
IG of old attributes (%)

Undergrad 1 3 6 4 7 8 5 2 27.5%
Grad 4 1 2 5 6 3 13.7%
Prof 2 4 6 3 5 7 1 37.7%
Staff 2 3 1 4.7%
Researcher 2 4 3 1 13.7%

a given class C, the EM term computes the number of non-accessed local
fragment objects in all fragments, while the ER term computes the number of
remote objects accessed by all queries running at each site.

PE(C) = EM2 + ER2, where:

EM2(C) =
M∑
i=1

T∑
t=1

freq2
ts × |Accit| × (1− |Accit|

|Fi|)

ER2(C) =
T∑

t=1
{ S∑

s=1

M∑
i=1

freq2
ts × |Accit| × |Accit|

|Fi| }
In EM expression, s is the site where a fragment Fi is located, while in

ER s is any site not containing Fi. M is the number of clusters for class C, T
is the number of queries and S is the number of sites. Accit represents the set
of objects accessed by the query qt from the fragment Fi. The smaller PE is,
better fragmentation quality we have.

In Figure 2 we present the results (quality measure) of applying the CBIC
method for incrementally clustering a set of classes. We start from the pre-
sumption that the classes are already horizontally fragmented. As in any usual
database use cases during the database lifecycle, it is normal that new appli-
cations/queries arrive. In the same time the requirements of the existing one
might change having as result the need to re-write existing queries. This would
lead to the fact that the set of query conditions that drove fragmentation when
the database was designed is no longer exactly the same. With the new appli-
cations arriving there is a new set of fragmentation conditions that arrive into
the environment. The impact of the new condition set might impose a new
re-fragmentation of the database. Instead of applying fragmentation from zero
the CBIC method starts with a nucleus of already fragmented classes and in-

9

A. Campan, A.S. Darabant, G. Serban - Clustering Techniques for
Adaptive Horizontal Fragmentation in OODBs

Figure 2: Experimental results

crementally introduces the effect of the new conditions into the fragmentation
result. Figure 2 presents the original fragmentation quality factors for each
class after applying the k-means fragmentation method and the new quality
measures for each class after incrementally re-fragmenting the database with
the set of the new added conditions. As it can be seen, the incremental frag-
mentation keeps the quality measures around the original ones without the
burden of the re-applying the fragmentation process on the entire database.
As a result we stay in about the same quality scale and we improve the pro-
cessing time as the incremental method always performs in less time than the
full fragmentation process. The incremental fragmentation results in better
quality for Grad, Researcher and Staff classes and for slightly worse quality
factors for the Prof and Undergrad classes. As a result we keep the fragmenta-
tion quality at about the same level without re-fragmenting the entire database
once we have new applications accessing data in a distributed architecture.

5. Conclusions and Future Work

We proposed in this paper a method for incrementally maintaining the pri-
mary horizontal fragments of an object oriented database. As our experiments

10

A. Campan, A.S. Darabant, G. Serban - Clustering Techniques for
Adaptive Horizontal Fragmentation in OODBs

show, this method can be effective and efficient, by reducing the processing
effort and time in maintaining and tuning the database. We aim to extend the
approach to derived horizontal fragmentation as well.

Also, as we said, in most of the experiments we have made on different data
sets, the CBIC method proved to be effective. But there are some situations
when it is better to resort to a full clusterization of the feature-extended object
set, and not to adapt the existing fragmentation using the CBIC algorithm.
For example such a situation is the addition of a large number of queries. This
enlargement of the query set will add a significant number of features to some
of the class extensions. If these new features bring a large information gain and
contradictory information with respect to the old feature set, than it might be
the case that incremental clustering is less effective than a normal clustering
process. As future work, we plan to first isolate conditions to decide when is
more effective to adapt incrementally (using CBIC) the fragmentation of an
object oriented database than to recalculate its fragmentation (using k-means)
from scratch. Next we want to find methods and algorithms for adapting a
fragmentation to general modifications of the query set, including not only the
appearance of new queries, but also the elimination of some of them. Also,
the evolution of class extensions (by creating or deleting class objects) must be
dealt with in an incremental manner, especially because the quantity of such
modifications is usually small in comparison with the entire object database.
We want to explore all the dimensions of this problem: identify algorithms
that fit, conditions when they are effective etc.

References

[1] Darabant, A.S., Campan, A., Semi-supervised learning techniques: k-
means clustering in OODB Fragmentation, IEEE International Conference on
Computational Cybernetics ICCC 2004, Vienna University of Technology, Aus-
tria, August 30 - September 1, 2004, pp. 333–338.

[2] Darabant, A.S., Campan, A., Hierarchical AI Clustering for Horizontal
Object Fragmentation, In Proc of Int. Conf. of Computers and Communica-
tions, Oradea, May, 2004, pp. 117–122.

[3] Darabant, A.S., Campan, A., AI Clustering Techniques: a New Ap-
proach to Object Oriented Database Fragmentation, in Proceedings of the
8th IEEE International Conference on Intelligent Engineering Systems, Cluj
Napoca, 2004, pp. 73–78.

11

A. Campan, A.S. Darabant, G. Serban - Clustering Techniques for
Adaptive Horizontal Fragmentation in OODBs

[4] Darabant, A.S., Campan, A., Cret, O., Hierarchical Clustering in Object
Oriented Data Models with Complex Class Relationships, in Proceedings of
the 8th IEEE International Conference on Intelligent Engineering Systems,
Cluj Napoca, 2004, pp. 307–312.

[5] Şerban, G., Campan, A., Core Based Incremental Clustering, Studia
Universitatis “Babeş-Bolyai”, Informatica, XLXI(2), 2005, pp. 89–96.

[6] Şerban, G., Campan, A., Incremental Clustering Using a Core-Based
Approach, in Proc. of the 20th International Symposium on Computer and
Information Sciences (ISCIS’05), Istanbul, Turkey, 2005 (to appear).

Alina Campan, Adrian Sergiu Darabant, Gabriela Serban
Department of Computer Science
University of Babes Bolyai University, Cluj Napoca
M. Kogalniceanu 1, Cluj-Napoca, Romania
email:{alina, dadi, gabis}@cs.ubbcluj.ro

12

